This is a complete training example for {Cifar10/100, STL10, SVHN, MNIST} tasks
##Data You can get the needed data using @soumith's repo: https://github.com/soumith/cifar.torch.git
##Dependencies Requires "eladtools" (https://github.com/eladhoffer/eladtools.git) for DataProvider class and optimizer.
##Training You can start training using:
th Main.lua -dataset Cifar10 -network Cifar10_Model -LR 0.1
or,
th Main.lua -dataset Cifar100 -network Cifar100_Model -LR 0.1
##Additional flags
Flag | Default Value | Description |
---|---|---|
modelsFolder | ./Models/ | Models Folder |
network | Model.lua | Model file - must return valid network. |
LR | 0.1 | learning rate |
LRDecay | 0 | learning rate decay (in # samples |
weightDecay | 1e-4 | L2 penalty on the weights |
momentum | 0.9 | momentum |
batchSize | 128 | batch size |
optimization | sgd | optimization method |
epoch | -1 | number of epochs to train (-1 for unbounded) |
threads | 8 | number of threads |
type | cuda | float or cuda |
devid | 1 | device ID (if using CUDA) |
load | none | load existing net weights |
save | time-identifier | save directory |
dataset | Cifar10 | Dataset - Cifar10, Cifar100, STL10, SVHN, MNIST |
whiten | false | whiten data |
augment | false | Augment training data |
preProcDir | ./PreProcData/ | Data for pre-processing (means,Pinv,P) |