8000 GitHub - nec-research/EMU-KG: implementation of EMU for KG link prediction
[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to content

nec-research/EMU-KG

Repository files navigation

EMU – Efficient Negative Sampling Method For Knowledge-Graph Link Prediction

EMU schematic picture

Introduction

This repository provides the PyTorch implementation of EMU technique presented in Optimal Embedding Guided Negative Sample Generation for Knowledge Graph Link Prediction paper as well as several popular KGE models.

Execution

As an example, the following command trains and validates a TransE model on wn18rr dataset by using EMU with uniform negative sampling:

CUDA_VISIBLE_DEVICES=0 python -u codes/run.py --cuda \
    --do_train --do_valid \
    --data_path data/wn18rr \
    --model TransE \
    -n 256 -b 1024 -d 1000 \
    -g 24.0 -a 1.0 \
    -lr 0.0001 --max_steps 150000 \
    -save models/TransE_wn18rr_0 --test_batch_size 16 \
    -khop 3 -nrw 1000 \ 
    -if_CE 1 -if_Mutup 0.3 -neg_label 0.5 -CE_coef 0.1

To check all the available arguments, you can run python codes/run.py --help.

Reproducibility

To reproduce the results presented in the TMLR paper Optimal Embedding Guided Negative Sample Generation for Knowledge Graph Link Prediction, you can use the commands provided in experiments_EMU.sh.

The Mamba environment can be reproduced using environment.yml as:

mamba env create -f environment.yml

Infrastructure

All experiments were carried on a server with one NVIDIA GeForce GTX 1080 Ti GPU.

Acknowledgments

Our implementation is based on the PyTorch implementation of Structure Aware Negative Sampling in Knowledge Graphs provided here.

Citation

@article{
takamoto2025optimal,
title={Optimal Embedding Guided Negative Sample Generation for Knowledge Graph Link Prediction},
author={Makoto Takamoto and Daniel Onoro Rubio and Wiem Ben Rim and Takashi Maruyama and Bhushan Kotnis},
journal={Transactions on Machine Learning Research},
issn={2835-8856},
year={2025},
url={https://openreview.net/forum?id=B4SyciDyIh},
note={}
}
@misc{takamoto2025optimalembeddingguidednegative,
      title={Optimal Embedding Guided Negative Sample Generation for Knowledge Graph Link Prediction}, 
      author={Makoto Takamoto and Daniel Oñoro-Rubio and Wiem Ben Rim and Takashi Maruyama and Bhushan Kotnis},
      year={2025},
      eprint={2504.03327},
      archivePrefix={arXiv},
      primaryClass={cs.LG},
      url={https://arxiv.org/abs/2504.03327}, 
}

About

implementation of EMU for KG link prediction

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published
0