8000 GitHub - onstriqui/3D-Detection-Code: 3D object detection code for autonomous / tele-operated vehicles.
[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to content

onstriqui/3D-Detection-Code

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

3D-Detection-Code

General 3d object detection code for kitti dataset and nuscene dataset. Code to implement 3d object detection code for better understanding and cleaning.

Environment Setup

1.Install dependence python packages for environment setup

conda install scikit-image scipy numba pillow matplotlib
pip install fire tensorboardX protobuf opencv-python

Prepare Dataset

  • KITTI Dataset Preparation

Download KITTI dataset and create some directories first:

|── KITTI_DATASET_ROOT
    ├── Train    <-- 7481 train data
    |   ├── image_2 <-- for visualization
    |   ├── calib
    |   ├── label_2
    |   ├── velodyne
    |   └── velodyne_reduced <-- empty directory
    └── Test     <-- 7580 test data
        ├── image_2 <-- for visualization
        ├── calib
        ├── velodyne
        └── velodyne_reduced <-- empty directory

Download Nuscenes dataset and create some directories first:

# For nuScenes Dataset                                                                                                                                        │
└── NUSCENES_TRAINVAL_DATASET_ROOT                                                                                                                            
       ├── samples       <-- key frames                                                                                                                       
       ├── sweeps        <-- frames without annotation                                                                                                        
       ├── maps          <-- unused                                                                                                                           
       └── v1.0-trainval <-- metadata and annotations                                                                                                         
└── NUSCENES_TEST_DATASET_ROOT  
       ├── samples       <-- key frames                                                                                                                       
       ├── sweeps        <-- frames without annotation                                                                                                        
       ├── maps          <-- unused    
       └── v1.0-test     <-- metadata    
  • convert to pickle file
# KITTI
python create_data.py kitti_data_prep --root_path=KITTI_DATASET_ROOT
# nuScenes
python create_data.py nuscenes_data_prep --root_path=NUSCENES_TRAINVAL_DATASET_ROOT --version="v1.0-trainval" --nsweeps=10
python create_data.py nuscenes_data_prep --root_path=NUSCENES_TEST_DATASET_ROOT --version="v1.0-test" --nsweeps=10

Performance

  • VoxelNet
Name db_sample subset mAP NDS
VoxelNet True True 45.33 58.12
SequenceVoxelNet True True

About

3D object detection code for autonomous / tele-operated vehicles.

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 82.2%
  • JavaScript 7.8%
  • Cuda 4.9%
  • C++ 3.2%
  • HTML 1.6%
  • Shell 0.2%
  • CSS 0.1%
0