Olga (Ge Ya) Xu
- torchvision==0.2.0
- matplotlib==2.2.2
- six==1.11.0
- torch.egg==info
- tqdm==4.23.0
- numpy==1.14.2
- Pillow==5.3.0
- torch==0.4.1.post2
- Project writeup: overleaf link
git clone https://github.com/oooolga/IFT6390_Project.git
cd IFT6390_Project
mkdir saved_models results
python main.py ...
usage: main.py [-h] [-lr LEARNING_RATE] [--batch_size BATCH_SIZE] [--test_batch_size TEST_BATCH_SIZE] [--epochs EPOCHS] [--seed SEED] [--weight_decay WEIGHT_DECAY] --model_name MODEL_NAME [--load_model LOAD_MODEL] [--optimizer {Adam,SGD}] [--dataset {CIFAR,FMNIST,EMNIST}] [--model {CNN,NN,Regression}] [--plot_freq PLOT_FREQ] optional arguments: -h, --help show this help message and exit -lr LEARNING_RATE, --learning_rate LEARNING_RATE Learning rate. --batch_size BATCH_SIZE Mini-batch size for training. --test_batch_size TEST_BATCH_SIZE Mini-batch size for testing. --epochs EPOCHS Total number of epochs. --seed SEED Random number seed. --weight_decay WEIGHT_DECAY Weight decay. --model_name MODEL_NAME Model name. --load_model LOAD_MODEL Load model path. --optimizer {Adam,SGD} Optimizer type. --dataset {CIFAR,FMNIST,EMNIST} Dataset choice. --model {CNN,NN,Regression} Model type. --plot_freq PLOT_FREQ plot_freq
python main.py -lr 0.01 --epochs 100 --weight_decay 5e-4 --model_name CIFAR_CNN --model CNN --optimizer SGD --dataset CIFAR
Model type: CNN
Dataset: CIFAR
Optimizer type: SGD
Learning rate: 0.01
Total number of epochs: 100
Learning rate: 0.01
Weight decay: 0.0005
Batch size: 50
Plot frequency: 5
python main.py -lr 0.01 --epochs 100 --weight_decay 5e-4 --model_name CIFAR_CNN --model CNN --optimizer SGD --dataset CIFAR --load_model saved_models/CIFAR_CNN.pt
python evaluate.py ...
usage: evaluate.py [-h] [--dataset {CIFAR,FMNIST,EMNIST}] [--model {CNN,NN,Regression}] --load_model LOAD_MODEL [--batch_size BATCH_SIZE] optional arguments: -h, --help show this help message and exit --dataset {CIFAR,FMNIST,EMNIST} Dataset choice. --model {CNN,NN,Regression} Model type. --load_model LOAD_MODEL Load model path. --batch_size BATCH_SIZE Mini-batch size for testing.
python evaluate.py --dataset CIFAR --model CNN --load_model saved_models/CIFAR_CNN.pt