8000 GitHub - azzandwi1/indonesian-food-prices-dataset
[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to content

azzandwi1/indonesian-food-prices-dataset

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

5 Commits
 
 
 
 
 
 
 
 

Repository files navigation

Indonesian Food Prices Dataset

Dataset Overview

This dataset contains daily prices of essential food commodities in Indonesia, collected from the Pusat Informasi Harga Pangan Strategis Nasional. The dataset has been preprocessed to ensure consistency and readiness for analysis. Below is a detailed explanation of the structure and content of the dataset.


Data Fields

1. tanggal

  • Format: dd-mm-yyyy
  • The date when the data was collected.

2. beras (Rice Prices)

  • Definition: The average price of six categories of rice.
    • Beras Kualitas Bawah I (beras_kb1)
    • Beras Kualitas Bawah II (beras_kb2)
    • Beras Kualitas Medium I (beras_km1)
    • Beras Kualitas Medium II (beras_km2)
    • Beras Kualitas Super I (beras_ks1)
    • Beras Kualitas Super II (beras_ks2)

Subfields:

  • beras_kb1: Price of Beras Kualitas Bawah I.
  • beras_kb2: Price of Beras Kualitas Bawah II.
  • beras_km1: Price of Beras Kualitas Medium I.
  • beras_km2: Price of Beras Kualitas Medium II.
  • beras_ks1: Price of Beras Kualitas Super I.
  • beras_ks2: Price of Beras Kualitas Super II.

3. daging_ayam (Chicken Prices)

  • Definition: The average price of fresh chicken (daging_ayam_rs).

Subfields:

  • daging_ayam_rs: Price of fresh chicken.

4. daging_sapi (Beef Prices)

  • Definition: The average price of two beef quality levels.
    • Daging Sapi Kualitas 1 (daging_sapi_k1)
    • Daging Sapi Kualitas 2 (daging_sapi_k2)

Subfields:

  • daging_sapi_k1: Price of Beef Quality 1.
  • daging_sapi_k2: Price of Beef Quality 2.

5. telur_ayam (Egg Prices)

  • Definition: The average price of fresh chicken eggs (telur_ayam_rs).

Subfields:

  • telur_ayam_rs: Price of fresh chicken eggs.

6. bawang_merah (Shallot Prices)

  • Definition: The average price of medium-sized shallots (bawang_merah_sedang).

Subfields:

  • bawang_merah_sedang: Price of medium-sized shallots.

7. bawang_putih (Garlic Prices)

  • Definition: The average price of medium-sized garlic (bawang_putih_sedang).

Subfields:

  • bawang_putih_sedang: Price of medium-sized garlic.

8. cabai_merah (Red Chili Prices)

  • Definition: The average price of:
    • Large Red Chili (cabai_merah_besar)
    • Curly Red Chili (cabai_merah_keriting)

Subfields:

  • cabai_merah_besar: Price of large red chili.
  • cabai_merah_keriting: Price of curly red chili.

9. cabai_rawit (Bird's Eye Chili Prices)

  • Definition: The average price of:
    • Green Bird's Eye Chili (cabai_rawit_hijau)
    • Red Bird's Eye Chili (cabai_rawit_merah)

Subfields:

  • cabai_rawit_hijau: Price of green bird's eye chili.
  • cabai_rawit_merah: Price of red bird's eye chili.

10. minyak_goreng (Cooking Oil Prices)

  • Definition: The average price of:
    • Bulk Cooking Oil (minyak_goreng_curah)
    • Branded Cooking Oil 1 (minyak_goreng_merk1)
    • Branded Cooking Oil 2 (minyak_goreng_merk2)

Subfields:

  • minyak_goreng_curah: Price of bulk cooking oil.
  • minyak_goreng_merk1: Price of branded cooking oil (Brand 1).
  • minyak_goreng_merk2: Price of branded cooking oil (Brand 2).

11. gula_pasir (Sugar Prices)

  • Definition: The average price of:
    • Premium Sugar (gula_pasir_premium)
    • Local Sugar (gula_pasir_lokal)

Subfields:

  • gula_pasir_premium: Price of premium sugar.
  • gula_pasir_lokal: Price of local sugar.

Preprocessing Steps

  1. Data Cleaning:
    • Removed unnecessary columns like "No" to retain only relevant data.
  2. Data Transformation:
    • Transposed the data for easier column manipulation.
  3. Column Standardization:
    • Unified column names across all files for consistent analysis.
  4. File Merging:
    • Combined data from multiple Excel files into a single dataset.

Usage

The dataset is highly versatile and can be applied to various fields, including but not limited to:

  1. Analyzing Food Price Trends

    • Track daily price movements of essential food commodities in Indonesia.
    • Identify patterns and anomalies over time.
  2. Economic Research and Policy-Making

    • Assess the impact of food price fluctuations on inflation.
    • Support the development of policies for food security and affordability.
  3. Forecasting Food Prices

    • Build predictive models to forecast future prices of commodities.
    • Utilize time-series analysis and machine learning techniques for demand and supply planning.
    • Predict the impact of seasonal trends, economic conditions, or external shocks on food prices.

Acknowledgment

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 2

  •  
  •  
0