8000 GitHub - adipandas/pyneat: NEAT: NeuroEvolution of Augmenting Topologies
[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to content

adipandas/pyneat

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

15 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

pyneat

This is an implementation of NEAT: NeuroEvolution of Augmenting Topologies in Python.

Environments Plot (reward vs. generations) Evolved Neural Network Architecture

Installation

pip install numpy scipy matplotlib
conda install pygraphviz
pip install networkx

Installation of OpenAI Gym: [link]

How to use?

This is a minimal implementation of NEAT. I haven't used any sort of parallel computing tricks like multiprocessing over here. The implementation should be fairly easy to understand.

python run_neat.py --help

python run_neat.py --task=lunar   # Run NEAT to learn lunar-lander policy

For any customization:

  • Different tasks: Edit run_neat.py
  • Hyperparameters: Edit pyneat/config.py

References:

  • Stanley, Kenneth O., and Risto Miikkulainen. "Efficient evolution of neural network topologies." Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No. 02TH8600). Vol. 2. IEEE, 2002.
  • neat-python: https://github.com/CodeReclaimers/neat-python

Refer the following implementation for additional (advanced) functionalities.

Please let me know if you come across any bugs in this implementation. Feel free to send any pull requests.

Languages

0