Provides an In-Memory data structure, the IndexedSet, that allows to easily add indices to allow efficient querying. Based on often seeing inefficient usage of
.FirstOrDefault
, .Where
, .Single
etc... and implementing data-structures to improve those queries for every project I'm on.
A sample showing different queries as you might want do for a report:
// typically, you would query this from the db
var data = new Purchase[] {
new(Id: 1, ProductId: 1, Amount: 1, UnitPrice: 5),
new(Id: 2, ProductId: 1, Amount: 2, UnitPrice: 5),
new(Id: 6, ProductId: 4, Amount: 3, UnitPrice: 12),
new(Id: 7, ProductId: 4, Amount: 8, UnitPrice: 10) // discounted price
};
IndexedSet<int, Purchase> set = data.ToIndexedSet(x => x.Id)
.WithIndex(x => x.ProductId)
.WithRangeIndex(x => x.Amount)
.WithRangeIndex(x => x.UnitPrice)
.WithRangeIndex(x => x.Amount * x.UnitPrice)
.WithIndex(x => (x.ProductId, x.UnitPrice))
.Build();
// efficient queries on configured indices
_ = set.Where(x => x.ProductId, 4);
_ = set.Range(x => x.Amount, 1, 3, inclusiveStart: true, inclusiveEnd: true);
_ = set.GreaterThanOrEqual(x => x.UnitPrice, 10);
_ = set.MaxBy(x => x.Amount * x.UnitPrice);
_ = set.Where(x => (x.ProductId, x.UnitPrice), (4, 10));
- n: total number of elements
- m: number of elements in the return set
- ✔: Supported
- ⚠: Supported but throws if not exactly 1 item was found
- ❌: Not-supported
Query | Unique-Index | NonUnique-Index | Range-Index |
---|---|---|---|
Single | ⚠ O(1) | ⚠ O(1) | ⚠ O(log n) |
Where | ✔ O(1) | ✔ O(m) | ✔ O(log n + m) |
Range | ❌ | ❌ | ✔ O(log n + m) |
< / <= | ❌ | ❌ | ✔ O(log n + m) |
> / >= | ❌ | ❌ | ✔ O(log n + m) |
OrderBy | ❌ | ❌ | ✔ O(m) |
Max/Min | ❌ | ❌ | ✔ O(1) |
- w: length of query word
- D: maximum distance in fuzzy query
Query | Prefix-Index | FullText-Index |
---|---|---|
StartWith | ⚠ O(w) | ⚠ O(w) |
Contains | ❌ | ✔ O(w) |
Fuzzy StartWith | ⚠ O(w+D) | ⚠ O(w+D) |
Fuzzy Contains | ❌ | ✔ O(w+D) |
ℹ FullText indices use a lot more memory than prefix indices and are more expensive to construct. Only use FullText indices if you really require it.
This project aims to provide a data structure (it's not a DB!) that allows to easily setup fast access on different properties:
Dictionary-based, O(1), access on keys:
IndexedSet<int, Data> set = IndexedSetBuilder<Data>.Create(a => a.PrimaryKey)
.WithUniqueIndex(x => x.SecondaryKey)
.Build();
_ = set.Add(new(PrimaryKey: 1, SecondaryKey: 5));
// fast access via primary key
Data data = set[1];
// fast access via secondary key
data = set.Single(x => x.SecondaryKey, 5);
ℹ Entities do not require a primary key.
IndexedSet<TPrimaryKey, TData>
inherits fromIndexedSet<TData>
but provides convenient access to the automatically added unique index:set[primaryKey]
instead ofset.Single(x => x.PrimaryKey, primaryKey)
.
Dictionary-based, O(1), access on keys (single value) with multiple values (multiple keys):
IndexedSet<int, Data> set = new Data[] { new(PrimaryKey: 1, SecondaryKey: 5), new(PrimaryKey: 2, SecondaryKey: 5) }
.ToIndexedSet(x => x.PrimaryKey)
.WithIndex(x => x.SecondaryKey)
.Build();
// fast access via secondary key
IEnumerable<Data> data = set.Where(x => x.SecondaryKey, 5);
Dictionary-based, O(1), access on denormalized keys i.e. multiple keys for multiple entities:
IndexedSet<int, GraphNode> set = IndexedSetBuilder<GraphNode>.Create(a => a.Id)
.WithIndex(x => x.ConnectsTo) // Where ConnectsTo returns an IEnumerable<int>
.Build();
// 1 2
// |\ /
// | 3
// \|
// 4
_ = set.Add(new(Id: 1, ConnectsTo: new[] { 3, 4 }));
_ = set.Add(new(Id: 2, ConnectsTo: new[] { 3 }));
_ = set.Add(new(Id: 3, ConnectsTo: new[] { 1, 2, 3 }));
_ = set.Add(new(Id: 4, ConnectsTo: new[] { 1, 3 }));
// For readability, it is recommended to write the name for the parameter contains
IEnumerable<GraphNode> nodesThatConnectTo1 = set.Where(x => x.ConnectsTo, contains: 1); // returns nodes 3 & 4
IEnumerable<GraphNode> nodesThatConnectTo3 = set.Where(x => x.ConnectsTo, contains: 1); // returns nodes 1 & 2 & 3
// Non-optimized Where(x => x.Contains(...)) query:
nodesThatConnectTo1 = set.FullScan().Where(x => x.ConnectsTo.Contains(1)); // returns nodes 3 & 4, but enumerates through the entire set
Binary-heap based O(log(n)) access for range based, smaller than (or equals) or bigger than (or equals) and orderby queries. Also useful to do paging sorted on exactly one index.
IndexedSet<Data> set = IndexedSetBuilder.Create(new Data[] { new(1, SecondaryKey: 3), new(2, SecondaryKey: 4) })
.WithRangeIndex(x => x.SecondaryKey)
.Build();
// fast access via range query
IEnumerable<Data> data = set.Range(x => x.SecondaryKey, 1, 5);
// fast max & min key value or elements
int maxKey = set.Max(x => x.SecondaryKey);
data = set.MaxBy(x => x.SecondaryKey);
// fast larger or smaller than
data = set.LessThan(x => x.SecondaryKey, 4);
// fast ordering & paging
data = set.OrderBy(x => x.SecondaryKey, skip: 10).Take(10); // second page of 10 elements
Prefix- & Suffix-Trie based indices for efficient StartWith & String-Contains queries including support for fuzzy matching.
IndexedSet<Type> data = typeof(object).Assembly.GetTypes()
.ToIndexedSet()
.WithPrefixIndex(x => x.Name.AsMemory())
.WithFullTextIndex(x => x.FullName.AsMemory())
.Build();
// fast prefix or contains queries via indices
_ = data.StartsWith(x => x.Name.AsMemory(), "Int".AsMemory());
_ = data.Contains(x => x.FullName.AsMemory(), "Int".AsMemory());
// fuzzy searching is supported by prefix and full text indices
// the following will also match "String"
_ = data.FuzzyStartsWith(x => x.Name.AsMemory(), "Strang".AsMemory(), 1);
_ = data.FuzzyContains(x => x.FullName.AsMemory(), "Strang".AsMemory(), 1);
The data structure also allows to use computed or compound keys:
var data = new RangeData[] { new(Start: 2, End: 10) };
IndexedSet<RangeData> set = data.ToIndexedSet()
.WithIndex(x => (x.Start, x.End))
.WithIndex(x => x.End - x.Start)
.WithIndex(ComputedKey.SomeStaticMethod)
.Build();
// fast access via indices
IEnumerable<RangeData> result = set.Where(x => (x.Start, x.End), (2, 10));
result = set.Where(x => x.End - x.Start, 8);
result = set.Where(ComputedKey.SomeStaticMethod, 42);
ℹ For more samples, take a look at the unit tests.
We are using the CallerArgumentExpression-Feature of .Net 6/C# 10 to provide convention-based naming of the indices:
set.Where(x => (x.Prop1, x.Prop2), (1, 2))
tries to use an index named"x => (x.Prop1, x.Prop2)"
set.Where(ComputedKeys.NumberOfDays, 5)
tries to use an index named"ComputedKeys.NumberOfDays"
- Hence, be careful what you pass in. The convention is to always use a lambda with x as variable name or use static methods.
Reasons
- Simple and yet effective:
- Allows computed, compound, custom values etc. to be indexed without adding complexity...
- Performance: No reflection at work and no (runtime) code-gen necessary
- AOT-friendly including full trimming support
The current implementation requires any keys of any type to never change the value while the instance is within the set. Hence, in order to update any key you will need to remove the instance, update the keys and add the instance again.
Use "named" indices by using static methods:
record Data(int PrimaryKey, int SecondaryKey);
IndexedSet<int, Data> set = IndexedSetBuilder<Data>.Create(x => x.PrimaryKey)
.WithUniqueIndex(DataIndices.UniqueIndex)
.WithRangeIndex(x => x.SecondaryKey)
.Build();
_ = set.Add(new(1, 4));
// querying unique index:
Data data = set.Single(DataIndices.UniqueIndex, 4); // Uses the unique index
Data data2 = set.Single(x => x.SecondaryKey, 4); // Uses the range index
IEnumerable<Data> inRange = set.Range(x => x.SecondaryKey, 1, 10); // Uses the range index
ℹ We recommend using the lambda syntax for "simple" properties and static methods for more complicated ones. It's easy to read, resembles "normal" LINQ-Queries and all the magic strings are compiler generated.
Potential features (not ordered):
- Thread-safe version
- Easier updating of keys
- Events for changed values
- More index types (Trie)
- Tree-based range index for better insertion performance
- Analyzers to help with best practices
- Range insertion and corresponding
.ToIndexedSet().WithIndex(x => ...).[...].Build()
- Refactoring to allow a primarykey-less set: this was an artifical restriction that is not necessary
- Aggregates (i.e. sum or average: interface based on state & add/removal state update functions)
- Benchmarks
If you have any suggestion or found a bug / unexpected behavior, open an issue! I will also review PRs and integrate them if they fit the project.