8000 Bump black from 21.12b0 to 22.1.0 by dependabot[bot] · Pull Request #5554 · allenai/allennlp · GitHub
[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to content
This repository was archived by the owner on Dec 16, 2022. It is now read-only.

Bump black from 21.12b0 to 22.1.0 #5554

Merged
merged 8 commits into from
Feb 10, 2022
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
< 10000 div id="diff-06572a96a58dc510037d5efa622f9bec8519bc1beab13c9f251e97e657a9d4ed" data-details-container-group="file" class="file js-file js-details-container js-targetable-element show-inline-notes Details Details--on open soft-wrap file-type-prose " data-file-type=".md" data-file-deleted="false" data-tagsearch-path="CHANGELOG.md" data-targets="diff-file-filter.diffEntries" >
4 changes: 4 additions & 0 deletions CHANGELOG.md
Original file line number Diff line number Diff line change
Expand Up @@ -7,6 +7,10 @@ and this project adheres to [Semantic Versioning](https://semver.org/spec/v2.0.0

## Unreleased

### Fixed

- Updated dependencies, especially around doc creation.

## [v2.9.0](https://github.com/allenai/allennlp/releases/tag/v2.9.0) - 2022-01-27

### Added
Expand Down
2 changes: 1 addition & 1 deletion allennlp/commands/find_learning_rate.py
Original file line number Diff line number Diff line change
Expand Up @@ -281,7 +281,7 @@ def search_learning_rate(
if linear_steps:
current_lr = start_lr + (lr_update_factor * i)
else:
current_lr = start_lr * (lr_update_factor ** i)
current_lr = start_lr * (lr_update_factor**i)

for param_group in trainer.optimizer.param_groups:
param_group["lr"] = current_lr
Expand Down
2 changes: 1 addition & 1 deletion allennlp/fairness/bias_metrics.py
Original file line number Diff line number Diff line change
Expand Up @@ -240,7 +240,7 @@ def spearman_correlation(self, x: torch.Tensor, y: torch.Tensor):

n = x.size(0)
upper = 6 * torch.sum((x_rank - y_rank).pow(2))
down = n * (n ** 2 - 1.0)
down = n * (n**2 - 1.0)
return 1.0 - (upper / down)


Expand Down
6 changes: 3 additions & 3 deletions allennlp/modules/transformer/attention_module.py
Original file line number Diff line number Diff line change
Expand Up @@ -134,16 +134,16 @@ def _normalize(self) -> None:
self.query.weight.data.normal_(
mean=0.0, std=(self.hidden_size * self.attention_head_size) ** -0.5
)
self.key.weight.data.normal_(mean=0.0, std=self.hidden_size ** -0.5)
self.value.weight.data.normal_(mean=0.0, std=self.hidden_size ** -0.5)
self.key.weight.data.normal_(mean=0.0, std=self.hidden_size**-0.5)
self.value.weight.data.normal_(mean=0.0, std=self.hidden_size**-0.5)

if hasattr(self, "output"):
self.output.weight.data.normal_(
mean=0.0, std=(self.num_attention_heads * self.attention_head_size) ** -0.5
)

if hasattr(self, "relative_attention_bias"):
self.relative_attention_bias.weight.data.normal_(mean=0.0, std=self.hidden_size ** -0.5)
self.relative_attention_bias.weight.data.normal_(mean=0.0, std=self.hidden_size**-0.5)

def _transpose_for_scores(self, x: torch.Tensor) -> torch.Tensor:
new_x_shape = x.size()[:-1] + (
Expand Down
12 changes: 6 additions & 6 deletions allennlp/modules/transformer/t5.py
Original file line number Diff line number Diff line change
Expand Up @@ -63,9 +63,9 @@ class T5DenseReluDense(TransformerModule, FromParams):
def __init__(self, hidden_size: int = 512, ff_size: int = 2048, dropout: float = 0.1):
super().__init__()
self.wi = nn.Linear(hidden_size, ff_size, bias=False)
self.wi.weight.data.normal_(mean=0.0, std=hidden_size ** -0.5)
self.wi.weight.data.normal_(mean=0.0, std=hidden_size**-0.5)
self.wo = nn.Linear(ff_size, hidden_size, bias=False)
self.wo.weight.data.normal_(mean=0.0, std=ff_size ** -0.5)
self.wo.weight.data.normal_(mean=0.0, std=ff_size**-0.5)
self.dropout = nn.Dropout(dropout)

def forward(self, hidden_states) -> FloatT:
Expand All @@ -81,11 +81,11 @@ class T5DenseGatedGeluDense(TransformerModule, FromParams):
def __init__(self, hidden_size: int = 512, ff_size: int = 2048, dropout: float = 0.1):
super().__init__()
self.wi_0 = nn.Linear(hidden_size, ff_size, bias=False)
self.wi_0.weight.data.normal_(mean=0.0, std=hidden_size ** -0.5)
self.wi_0.weight.data.normal_(mean=0.0, std=hidden_size**-0.5)
self.wi_1 = nn.Linear(hidden_size, ff_size, bias=False)
self.wi_1.weight.data.normal_(mean=0.0, std=hidden_size ** -0.5)
self.wi_1.weight.data.normal_(mean=0.0, std=hidden_size**-0.5)
self.wo = nn.Linear(ff_size, hidden_size, bias=False)
self.wo.weight.data.normal_(mean=0.0, std=ff_size ** -0.5)
self.wo.weight.data.normal_(mean=0.0, std=ff_size**-0.5)
self.dropout = nn.Dropout(dropout)
from allennlp.nn import Activation

Expand Down Expand Up @@ -964,7 +964,7 @@ def _get_lm_logits(self, decoder_last_hidden_state: FloatT) -> FloatT:
# TODO: HF only does this when does this when embeddings are tied.
# Currently tied embeddings is the only option we have, but if make
# that configurable then we should put this in an 'if' block.
sequence_output = sequence_output * (self.model_dim ** -0.5)
sequence_output = sequence_output * (self.model_dim**-0.5)
# Shape: (batch_size, target_length, vocab_size)
logits = self.lm_head(sequence_output)
return logits
Expand Down
2 changes: 1 addition & 1 deletion allennlp/nn/beam_search.py
Original file line number Diff line number Diff line change
Expand Up @@ -515,7 +515,7 @@ def score(
lengths += is_end_token.long()

# shape: (batch_size, beam_size)
average_log_probs = log_probabilities / (lengths ** self.length_penalty)
average_log_probs = log_probabilities / (lengths**self.length_penalty)
return average_log_probs


Expand Down
4 changes: 2 additions & 2 deletions allennlp/training/learning_rate_schedulers/cosine.py
Original file line number Diff line number Diff line change
Expand Up @@ -109,8 +109,8 @@ def get_values(self):
self._cycle_counter = 0
self._last_restart = step

base_lrs = [lr * self.eta_mul ** self._n_restarts for lr in self.base_values]
self._cycle_len = int(self.t_initial * self.t_mul ** self._n_restarts)
base_lrs = [lr * self.eta_mul**self._n_restarts for lr in self.base_values]
self._cycle_len = int(self.t_initial * self.t_mul**self._n_restarts)

lrs = [
self.eta_min
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -86,7 +86,7 @@ def __init__(
for i in range(len(self.base_values) - 1, -1, -1):
param_group = optimizer.param_groups[i]
if param_group["params"]:
param_group["lr"] = self.base_values[i] * decay_factor ** exponent
param_group["lr"] = self.base_values[i] * decay_factor**exponent
self.base_values[i] = param_group["lr"]
exponent += 1
# set up for the first batch
Expand Down
2 changes: 1 addition & 1 deletion allennlp/training/metrics/fbeta_measure.py
Original file line number Diff line number Diff line change
Expand Up @@ -196,7 +196,7 @@ def get_metric(self, reset: bool = False):
pred_sum = pred_sum.sum() # type: ignore
true_sum = true_sum.sum() # type: ignore

beta2 = self._beta ** 2
beta2 = self._beta**2
# Finally, we have all our sufficient statistics.
precision = nan_safe_tensor_divide(tp_sum, pred_sum)
recall = nan_safe_tensor_divide(tp_sum, true_sum)
Expand Down
9 changes: 4 additions & 5 deletions dev-requirements.txt
Original file line number Diff line number Diff line change
Expand Up @@ -7,7 +7,7 @@ flake8
mypy==0.931

# Automatic code formatting
black==21.12b0
black==22.1.0

# Allows generation of coverage reports with pytest.
pytest-cov
Expand All @@ -34,11 +34,10 @@ pytest-benchmark
ruamel.yaml

# Generating markdown files from Python modules.
git+https://github.com/NiklasRosenstein/pydoc-markdown.git@f0bf8af1db4f11581c19d206d4ed1ab34b4854c1
nr.databind.core<0.0.17
nr.interface<0.0.6
pydoc-markdown>=4.0.0,<5.0.0
databind.core

mkdocs==1.1.2
mkdocs==1.2.3
mkdocs-material>=5.5.0,<8.2.0
markdown-include==0.6.0

Expand Down
2 changes: 1 addition & 1 deletion scripts/ai2_internal/run_with_beaker.py
Original file line number Diff line number Diff line change
Expand Up @@ -12,7 +12,7 @@

# This has to happen before we import spacy (even indirectly), because for some crazy reason spacy
# thought it was a good idea to set the random seed on import...
random_int = random.randint(0, 2 ** 32)
random_int = random.randint(0, 2**32)

sys.path.insert(
0, os.path.dirname(os.path.abspath(os.path.join(os.path.join(__file__, os.pardir), os.pardir)))
Expand Down
Loading
0