8000 Update transformers requirement from <4.20,>=4.1 to >=4.1,<4.21 by dependabot[bot] · Pull Request #5675 · allenai/allennlp · GitHub
[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to content
This repository was archived by the owner on Dec 16, 2022. It is now read-only.

Update transformers requirement from <4.20,>=4.1 to >=4.1,<4.21 #5675

Merged
merged 3 commits into from
Jun 29, 2022

Conversation

dependabot[bot]
Copy link
Contributor
@dependabot dependabot bot commented on behalf of github Jun 21, 2022

Updates the requirements on transformers to permit the latest version.

Release notes

Sourced from transformers's releases.

v4.20.0 Big Model infernece, BLOOM, CvT, GPT Neo-X, LayoutLMv3, LeViT, LongT5, M-CTC-T, Trajectory Transformer and Wav2Vec2-Conformer

Big model inference

You can now use the big model inference of Accelerate directly in any call to from_pretrained by specifying device_map="auto" (or your own device_map). It will automatically load the model taking advantage of your GPU(s) then offloading what doesn't fit in RAM, or even on the hard drive if you don't have RAM. Your model can then be used normally for inference without anything else to do.

from transformers import AutoModelForSeq2SeqLM
model = AutoModelForSeq2SeqLM.from_pretrained(
"bigscience/T0pp", revision="sharded", device_map="auto"
)

BLOOM

The BLOOM model has been proposed with its various versions through the BigScience Workshop. The architecture of BLOOM is essentially similar to GPT3 (auto-regressive model for next token prediction), but has been trained on different 46 languages including code.

CvT

The Convolutional vision Transformer (CvT) improves the Vision Transformer (ViT) in performance and efficiency by introducing convolutions into ViT to yield the best of both designs.

GPT Neo-X

GPT-NeoX-20B is a 20 billion parameter autoregressive language model trained on the Pile, whose weights are made freely and openly available to the public through a permissive license. GPT-NeoX-20B is a particularly powerful few-shot reasoner and gains far more in performance when evaluated five-shot than similarly sized GPT-3 and FairSeq models.

LayoutLMv3

LayoutLMv3 simplifies LayoutLMv2 by using patch embeddings (as in ViT) instead of leveraging a CNN backbone, and pre-trains the model on 3 objectives: masked language modeling (MLM), masked image modeling (MIM) and word-patch alignment (WPA).

LeViT

LeViT improves the Vision Transformer (ViT) in performance and efficiency by a few architectural differences such as activation maps with decreasing resolutions in Transformers and the introduction of an attention bias to integrate positional information.

LongT5

LongT5 model is an extension of T5 model, and it enables using one of the two different efficient attention mechanisms - (1) Local attention, or (2) Transient-Global attention. It is capable of handling input sequences of a length up to 16,384 tokens.

... (truncated)

Commits

Dependabot will resolve any conflicts with this PR as long as you don't alter it yourself. You can also trigger a rebase manually by commenting @dependabot rebase.


Dependabot commands and options

You can trigger Dependabot actions by commenting on this PR:

  • @dependabot rebase will rebase this PR
  • @dependabot recreate will recreate this PR, overwriting any edits that have been made to it
  • @dependabot merge will merge this PR after your CI passes on it
  • @dependabot squash and merge will squash and merge this PR after your CI passes on it
  • @dependabot cancel merge will cancel a previously requested merge and block automerging
  • @dependabot reopen will reopen this PR if it is closed
  • @dependabot close will close this PR and stop Dependabot recreating it. You can achieve the same result by closing it manually
  • @dependabot ignore this major version will close this PR and stop Dependabot creating any more for this major version (unless you reopen the PR or upgrade to it yourself)
  • @dependabot ignore this minor version will close this PR and stop Dependabot creating any more for this minor version (unless you reopen the PR or upgrade to it yourself)
  • @dependabot ignore this dependency will close this PR and stop Dependabot creating any more for this dependency (unless you reopen the PR or upgrade to it yourself)

Updates the requirements on [transformers](https://github.com/huggingface/transformers) to permit the latest version.
- [Release notes](https://github.com/huggingface/transformers/releases)
- [Commits](huggingface/transformers@v4.1.0...v4.20.0)

---
updated-dependencies:
- dependency-name: transformers
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>
@dependabot dependabot bot added dependencies Pull requests that update a dependency file python Pull requests that update Python code labels Jun 21, 2022
@dependabot @github
Copy link
Contributor Author
dependabot bot commented on behalf of github Jun 22, 2022

A newer version of transformers exists, but since this PR has been edited by someone other than Dependabot I haven't updated it. You'll get a PR for the updated version as normal once this PR is merged.

@epwalsh epwalsh enabled auto-merge (squash) June 29, 2022 20:25
@epwalsh epwalsh merged commit 7bcbb5a into main Jun 29, 2022
@epwalsh epwalsh deleted the dependabot/pip/transformers-gte-4.1-and-lt-4.21 branch June 29, 2022 20:44
Sign up for free to subscribe to this conversation on GitHub. Already have an account? Sign in.
Labels
dependencies Pull requests that update a dependency file python Pull requests that update Python code
Projects
None yet
Development

Successfully merging this pull request may close these issues.

2 participants
0