8000 Preserve best metrics by DeNeutoy · Pull Request #1504 · allenai/allennlp · GitHub
[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to content
This repository was archived by the owner on Dec 16, 2022. It is now read-only.

Preserve best metrics #1504

Merged
merged 6 commits into from
Jul 20, 2018
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
8 changes: 8 additions & 0 deletions allennlp/tests/training/trainer_test.py
Original file line number Diff line number Diff line change
Expand Up @@ -53,6 +53,10 @@ def test_trainer_can_run(self):
metrics = trainer.train()
assert 'best_validation_loss' in metrics
assert isinstance(metrics['best_validation_loss'], float)
assert 'best_validation_accuracy' in metrics
assert isinstance(metrics['best_validation_accuracy'], float)
assert 'best_validation_accuracy3' in metrics
assert isinstance(metrics['best_validation_accuracy3'], float)
assert 'best_epoch' in metrics
assert isinstance(metrics['best_epoch'], int)

Expand All @@ -67,6 +71,10 @@ def test_trainer_can_run(self):
metrics = trainer.train()
assert 'best_validation_loss' in metrics
assert isinstance(metrics['best_validation_loss'], float)
assert 'best_validation_accuracy' in metrics
assert isinstance(metrics['best_validation_accuracy'], float)
assert 'best_validation_accuracy3' in metrics
assert isinstance(metrics['best_validation_accuracy3'], float)
assert 'best_epoch' in metrics
assert isinstance(metrics['best_epoch'], int)

Expand Down
7 changes: 5 additions & 2 deletions allennlp/training/trainer.py
Original file line number Diff line number Diff line change
Expand Up @@ -706,6 +706,7 @@ def train(self) -> Dict[str, Any]:

train_metrics: Dict[str, float] = {}
val_metrics: Dict[str, float] = {}
best_epoch_val_metrics: Dict[str, float] = {}
epochs_trained = 0
training_start_time = time.time()
for epoch in range(epoch_counter, self._num_epochs):
Expand All @@ -723,7 +724,8 @@ def train(self) -> Dict[str, Any]:

# Check validation metric to see if it's the best so far
is_best_so_far = self._is_best_so_far(this_epoch_val_metric, validation_metric_per_epoch)

if is_best_so_far:
best_epoch_val_metrics = val_metrics.copy()
validation_metric_per_epoch.append(this_epoch_val_metric)
if self._should_stop_early(validation_metric_per_epoch):
logger.info("Ran out of patience. Stopping training.")
Expand All @@ -733,6 +735,7 @@ def train(self) -> Dict[str, Any]:
# No validation set, so just assume it's the best so far.
is_best_so_far = True
val_metrics = {}
best_epoch_val_metrics = {}
this_epoch_val_metric = None

self._save_checkpoint(epoch, validation_metric_per_epoch, is_best=is_best_so_far)
Expand Down Expand Up @@ -773,7 +776,7 @@ def train(self) -> Dict[str, Any]:
best_validation_metric = min(validation_metric_per_epoch)
else:
best_validation_metric = max(validation_metric_per_epoch)
metrics[f"best_validation_{self._validation_metric}"] = best_validation_metric
metrics.update({f"best_validation_{k}": v for k, v in best_epoch_val_metrics.items()})
metrics['best_epoch'] = [i for i, value in enumerate(validation_metric_per_epoch)
if value == best_validation_metric][-1]
return metrics
Expand Down
0