8000 GitHub - anhtuan284/mediscan: A R&D project about apply LCDP and Computer Vision in building medical disease segmentation system
[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to content

A R&D project about apply LCDP and Computer Vision in building medical disease segmentation system

License

Notifications You must be signed in to change notification settings

anhtuan284/mediscan

Repository files navigation

MediScan

Advanced Medical Image Analysis Platform powered by YOLO and DenseNet121 models

tensorflow fastapi appsmith strapi docker grafana yolo

Table of Contents

Core Features

  • ๐Ÿ” Advanced Image Analysis

    • Chest X-ray abnormality detection
    • Skin condition assessment
    • Multi-model support
  • โšก Performance

    • Real-time image processing
    • Optimized YOLO implementations
    • Scalable architecture
  • ๐Ÿ›  Technical Capabilities

    • RESTful API architecture
    • Comprehensive metrics monitoring

Application UI Demo

Medical Analysis Interface

DenseNet121 Prediction Disease Probability YOLO Detection Acne Detection

System Dashboard

System Monitoring Dashboard

System Overview

System Flow Architecture

System Flow End-to-end system architecture and data flow

Technology Stack

Tech Stack Complete technology stack overview

Tech Stack Breakdown

  • Data Processing & ML ๐Ÿงฎ

    • TensorFlow, PyTorch, scikit-learn, YOLO
    • Purpose: Model training and data preprocessing
  • AI Server ๐Ÿค–

    • FastAPI, MLflow, DenseNet, YOLO
    • Purpose: Model serving and experiment tracking
  • Frontend ๐ŸŽจ

    • Appsmith
    • Purpose: Medical imaging interface
  • Backend ๐Ÿ“

    • Strapi CMS, SQLite
    • Purpose: Patient data management
  • Monitoring ๐Ÿ“Š

    • Grafana, Prometheus
    • Purpose: System metrics and analytics

Content Management System

Strapi CMS Strapi CMS interface for content management

System Architecture

mediscan/
โ”œโ”€โ”€ .github/                    # GitHub-related configurations (CI/CD, issues, PRs)
โ”œโ”€โ”€ assets/                     # Static assets (e.g., images, icons, documentation)
โ”‚
โ”œโ”€โ”€ be-fastapi/                 # Core Analysis Engine
โ”‚   โ”œโ”€โ”€ main.py                 # Application entrypoint
โ”‚   โ”œโ”€โ”€ utils/                   # Core utilities
โ”‚   โ”‚   โ”œโ”€โ”€ models.py            # Model management & YOLO implementations
โ”‚   โ”‚   โ”œโ”€โ”€ image_processing.py  # Image preprocessing & augmentation
โ”‚   โ”‚   โ””โ”€โ”€ metrics.py           # Performance & inference metrics
โ”‚   โ”œโ”€โ”€ tests/                   # Test suites
โ”‚   โ”‚   โ”œโ”€โ”€ unit/                # Unit tests
โ”‚   โ”‚   โ””โ”€โ”€ integration/         # Integration tests
โ”‚   โ”œโ”€โ”€ models/                  # Pre-trained model storage
โ”‚   โ”‚   โ”œโ”€โ”€ xray/                # X-ray analysis models
โ”‚   โ”‚   โ””โ”€โ”€ skin/                # Skin condition models
โ”‚   โ””โ”€โ”€ requirements.txt         # Python dependencies
โ”‚
โ”œโ”€โ”€ be-fastapi-densenet/        # DenseNet Model Service
โ”‚   โ”œโ”€โ”€ main.py                 # DenseNet application entry
โ”‚   โ”œโ”€โ”€ models/                 # DenseNet model files
โ”‚   โ”‚   โ””โ”€โ”€ DenseNet121_epoch_30.keras
โ”‚   โ”œโ”€โ”€ services/               # Service Layer
โ”‚   โ”‚   โ”œโ”€โ”€ __init__.py
โ”‚   โ”‚   โ””โ”€โ”€ image_service.py
โ”‚   โ”œโ”€โ”€ utils/                  # DenseNet utilities
โ”‚   โ”‚   โ”œโ”€โ”€ __init__.py
โ”‚   โ”‚   โ”œโ”€โ”€ gradcam.py          # Grad-CAM visualization
โ”‚   โ”œโ”€โ”€ .dockerignore
โ”‚   โ”œโ”€โ”€ .gitignore
โ”‚   โ”œโ”€โ”€ config.py
โ”‚   โ”œโ”€โ”€ docker-compose.yml
โ”‚   โ”œโ”€โ”€ Dockerfile
โ”‚   โ”œโ”€โ”€ requirements.txt        # DenseNet dependencies
โ”‚   โ”œโ”€โ”€ schemas.py              # API schemas
โ”‚
โ”œโ”€โ”€ be-strapi/                  # Content Management System
โ”‚   โ”œโ”€โ”€ api/                    # API definitions & routes
โ”‚   โ”œโ”€โ”€ config/                 # CMS configurations
โ”‚   โ”œโ”€โ”€ scripts/                # Utility scripts
โ”‚   โ”‚   โ”œโ”€โ”€ seed.js             # Database seeding
โ”‚   โ”‚   โ””โ”€โ”€ backup.js           # Backup utilities
โ”‚   โ”œโ”€โ”€ data/                   # CMS data and content
โ”‚   โ”‚   โ”œโ”€โ”€ uploads/            # Media storage
โ”‚   โ”‚   โ””โ”€โ”€ exports/            # Data exports
โ”‚   โ””โ”€โ”€ package.json            # Node.js dependencies
โ”‚
โ”œโ”€โ”€ dataset/                    # Dataset storage and preprocessing
โ”‚
โ”œโ”€โ”€ fe-appsmith/                # Frontend Appsmith integration
โ”‚   โ””โ”€โ”€ PatientManagementApp.json  # Appsmith configurations
โ”‚
โ”œโ”€โ”€ grafana/                    # Analytics & Monitoring
โ”‚   โ”œโ”€โ”€ dashboards/             # Custom dashboard definitions
โ”‚   โ”‚   โ”œโ”€โ”€ system.json         # System metrics dashboard
โ”‚   โ”‚   โ””โ”€โ”€ model.json          # Model performance dashboard
โ”‚   โ””โ”€โ”€ provisioning/           # Grafana configurations
โ”‚       โ”œโ”€โ”€ datasources/        # Data source configs
โ”‚       โ””โ”€โ”€ notifications/      # Alert configurations
โ”‚
โ”œโ”€โ”€ notebooks/                  # Jupyter notebooks for experimentation
โ”‚
โ”œโ”€โ”€ prometheus/                 # Monitoring metrics collection
โ”‚   โ””โ”€โ”€ prometheus.yaml         # Prometheus data source configurations
โ”œโ”€โ”€ .gitattributes
โ”œโ”€โ”€ CODE_OF_CONDUCT.md          # Code of conduct guidelines
โ”œโ”€โ”€ docker-compose.yml          # Docker orchestration
โ”œโ”€โ”€ LICENSE                     # Open-source license
โ””โ”€โ”€ README.md                   # Project documentation

Development Setup

Requirements

  • Python 3.8+
  • Node.js 18+
  • Docker & Docker Compose
  • GPU support (recommended)

Quick Start

  1. Environment Setup

    git clone https://github.com/your-org/mediscan.git
    cd mediscan
  2. Backend & Monitoring services

    # FastAPI Backend
    cd be-fastapi
    python -m venv venv
    source venv/bin/activate  # Windows: venv\Scripts\Activate.ps1
    pip install -r requirements.txt
    
    # Start API Server
    uvicorn main:app --reload --port 8000
    
    # FastAPI Backend for DenseNet121
    cd be-fastapi-densenet
    python -m venv venv
    source venv/bin/activate  # Windows: venv\Scripts\Activate.ps1
    pip install -r requirements.txt
    
    # Start API Server
    uvicorn main:app --reload --port 5000

    OR with Docker Compose:

    docker-compose up -d
  3. CMS

    # Strapi CMS
    cd be-strapi
    npm install
    npm run develop

API Reference

Core Endpoints

Endpoint Method Description
/predict POST Generic prediction pipeline
/yolo_predict POST X-ray analysis
/acne-yolo-predict POST Skin condition analysis
/metrics GET System metrics
/health GET Service health

Configuration

Environment Variables

Variable Description Default
CORS_ORIGINS Allowed origins *
MODEL_PATH Model directory ./models
PORT Service port 8000

Monitoring

  • Real-time performance metrics
  • Model inference tracking
  • System resource monitoring
  • Custom Grafana dashboards

Contribut 700C ing

  1. Fork the repository
  2. Create a feature branch (git checkout -b feature/enhancement)
  3. Commit changes (git commit -am 'Add enhancement')
  4. Push branch (git push origin feature/enhancement)
  5. Open a Pull Request

License

MIT License - See LICENSE for details

About

A R&D project about apply LCDP and Computer Vision in building medical disease segmentation system

Topics

Resources

License

Code of conduct

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 2

  •  
  •  

Languages

0