Advanced Medical Image Analysis Platform powered by YOLO and DenseNet121 models
- Core Features
- Application UI Demo
- System Overview
- System Architecture
- Development Setup
- API Reference
- Configuration
- Monitoring
- Contributing
- License
-
๐ Advanced Image Analysis
- Chest X-ray abnormality detection
- Skin condition assessment
- Multi-model support
-
โก Performance
- Real-time image processing
- Optimized YOLO implementations
- Scalable architecture
-
๐ Technical Capabilities
- RESTful API architecture
- Comprehensive metrics monitoring
End-to-end system architecture and data flow
Complete technology stack overview
-
Data Processing & ML ๐งฎ
- TensorFlow, PyTorch, scikit-learn, YOLO
- Purpose: Model training and data preprocessing
-
AI Server ๐ค
- FastAPI, MLflow, DenseNet, YOLO
- Purpose: Model serving and experiment tracking
-
Frontend ๐จ
- Appsmith
- Purpose: Medical imaging interface
-
Backend ๐
- Strapi CMS, SQLite
- Purpose: Patient data management
-
Monitoring ๐
- Grafana, Prometheus
- Purpose: System metrics and analytics
Strapi CMS interface for content management
mediscan/
โโโ .github/ # GitHub-related configurations (CI/CD, issues, PRs)
โโโ assets/ # Static assets (e.g., images, icons, documentation)
โ
โโโ be-fastapi/ # Core Analysis Engine
โ โโโ main.py # Application entrypoint
โ โโโ utils/ # Core utilities
โ โ โโโ models.py # Model management & YOLO implementations
โ โ โโโ image_processing.py # Image preprocessing & augmentation
โ โ โโโ metrics.py # Performance & inference metrics
โ โโโ tests/ # Test suites
โ โ โโโ unit/ # Unit tests
โ โ โโโ integration/ # Integration tests
โ โโโ models/ # Pre-trained model storage
โ โ โโโ xray/ # X-ray analysis models
โ โ โโโ skin/ # Skin condition models
โ โโโ requirements.txt # Python dependencies
โ
โโโ be-fastapi-densenet/ # DenseNet Model Service
โ โโโ main.py # DenseNet application entry
โ โโโ models/ # DenseNet model files
โ โ โโโ DenseNet121_epoch_30.keras
โ โโโ services/ # Service Layer
โ โ โโโ __init__.py
โ โ โโโ image_service.py
โ โโโ utils/ # DenseNet utilities
โ โ โโโ __init__.py
โ โ โโโ gradcam.py # Grad-CAM visualization
โ โโโ .dockerignore
โ โโโ .gitignore
โ โโโ config.py
โ โโโ docker-compose.yml
โ โโโ Dockerfile
โ โโโ requirements.txt # DenseNet dependencies
โ โโโ schemas.py # API schemas
โ
โโโ be-strapi/ # Content Management System
โ โโโ api/ # API definitions & routes
โ โโโ config/ # CMS configurations
โ โโโ scripts/ # Utility scripts
โ โ โโโ seed.js # Database seeding
โ โ โโโ backup.js # Backup utilities
โ โโโ data/ # CMS data and content
โ โ โโโ uploads/ # Media storage
โ โ โโโ exports/ # Data exports
โ โโโ package.json # Node.js dependencies
โ
โโโ dataset/ # Dataset storage and preprocessing
โ
โโโ fe-appsmith/ # Frontend Appsmith integration
โ โโโ PatientManagementApp.json # Appsmith configurations
โ
โโโ grafana/ # Analytics & Monitoring
โ โโโ dashboards/ # Custom dashboard definitions
โ โ โโโ system.json # System metrics dashboard
โ โ โโโ model.json # Model performance dashboard
โ โโโ provisioning/ # Grafana configurations
โ โโโ datasources/ # Data source configs
โ โโโ notifications/ # Alert configurations
โ
โโโ notebooks/ # Jupyter notebooks for experimentation
โ
โโโ prometheus/ # Monitoring metrics collection
โ โโโ prometheus.yaml # Prometheus data source configurations
โโโ .gitattributes
โโโ CODE_OF_CONDUCT.md # Code of conduct guidelines
โโโ docker-compose.yml # Docker orchestration
โโโ LICENSE # Open-source license
โโโ README.md # Project documentation
- Python 3.8+
- Node.js 18+
- Docker & Docker Compose
- GPU support (recommended)
-
Environment Setup
git clone https://github.com/your-org/mediscan.git cd mediscan
-
Backend & Monitoring services
# FastAPI Backend cd be-fastapi python -m venv venv source venv/bin/activate # Windows: venv\Scripts\Activate.ps1 pip install -r requirements.txt # Start API Server uvicorn main:app --reload --port 8000 # FastAPI Backend for DenseNet121 cd be-fastapi-densenet python -m venv venv source venv/bin/activate # Windows: venv\Scripts\Activate.ps1 pip install -r requirements.txt # Start API Server uvicorn main:app --reload --port 5000
OR with Docker Compose:
docker-compose up -d
-
CMS
# Strapi CMS cd be-strapi npm install npm run develop
Endpoint | Method | Description |
---|---|---|
/predict |
POST | Generic prediction pipeline |
/yolo_predict |
POST | X-ray analysis |
/acne-yolo-predict |
POST | Skin condition analysis |
/metrics |
GET | System metrics |
/health |
GET | Service health |
Variable | Description | Default |
---|---|---|
CORS_ORIGINS |
Allowed origins | * |
MODEL_PATH |
Model directory | ./models |
PORT |
Service port | 8000 |
- Real-time performance metrics
- Model inference tracking
- System resource monitoring
- Custom Grafana dashboards
- Fork the repository
- Create a feature branch (
git checkout -b feature/enhancement
) - Commit changes (
git commit -am 'Add enhancement'
) - Push branch (
git push origin feature/enhancement
) - Open a Pull Request
MIT License - See LICENSE for details