New version of BERGEN (a.k.a BERGEN UP✨)
BERGEN (BEnchmarking Retrieval-augmented GENeration) is a library designed to benchmark RAG systems with a focus on question-answering (QA) by NAVER Labs. It addresses the challenge of inconsistent benchmarking in comparing approaches and understanding the impact of each component in a RAG pipeline. Unlike BERGEN, BERGEN-UP is an end-to-end evaluation pipeline that enhanced focuses on the diversity of RAG pipelines and the functionality of each modules.
- E2E Evaluation Pipeline for RAG
- Chunking
- token level
- recall
- precision
- iou
- token level
- Pre-Retrieval
- Retrieval
- Post-Retrieval
- Generation
- Chunking
- Extra Module for RAG
- Generate Synthetic Dataset
- QA (= Question Answering)
- Generate Synthetic Dataset
$ uv run pipeline.py label='__experiments_name__'
Chunking Module
-
핵심 기능
- Token Level 평가
- Metric : (https://research.trychroma.com/evaluating-chunking)
- iou
- precision
- recall
- Metric : (https://research.trychroma.com/evaluating-chunking)
- Token Level 평가
-
사용법
conf/config.yaml
의chunking
섹션에 아래 내용을 참고하여 작성한다.
chunking: strategies: - question_set_path: "${hydra:runtime.cwd}/data/chunking/question_set/questions_df_chatlogs.csv" - corpora_id_paths: chatlogs: "${hydra:runtime.cwd}/data/chunking/corpora/chatlogs.md" - Semantic Chunking: mode: openai embedding_model: "text-embedding-3-large" custom_url: "custom_embedding_function_api_address" - Recursive Token Chunking: chunk_size: 800 chunk_overlap: 400 - Fixed Token Chunking: chunk_size: 800 chunk_overlap: 400