8000 GitHub - ashdehghan/NEExT
[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to content

ashdehghan/NEExT

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 

Repository files navigation

NEExT: Network Embedding Experimentation Toolkit

NEExT is a powerful Python framework for graph analysis, embedding computation, and machine learning on graph-structured data. It provides a unified interface for working with different graph backends (NetworkX and iGraph), computing node features, generating graph embeddings, and training machine learning models.

πŸ“š Documentation

Detailed documentation is available in the docs directory. Build it locally or visit the online documentation at NEExT Documentation.

🌟 Features

  • Flexible Graph Handling

    • Support for both NetworkX and iGraph backends
    • Automatic graph reindexing and largest component filtering
    • Node sampling capabilities for large graphs
    • Rich attribute support for nodes and edges
  • Comprehensive Node Features

    • PageRank
    • Degree Centrality
    • Closeness Centrality
    • Betweenness Centrality
    • Eigenvector Centrality
    • Clustering Coefficient
    • Local Efficiency
    • LSME (Local Structural Motif Embeddings)
  • Graph Embeddings

    • Approximate Wasserstein
    • Exact Wasserstein
    • Sinkhorn Vectorizer
    • Customizable embedding dimensions
  • Machine Learning Integration

    • Classification and regression support
    • Dataset balancing options
    • Cross-validation with customizable splits
    • Feature importance analysis

Custom Node Feature Functions

NEExT allows you to define and compute your own custom node feature functions alongside the built-in ones. This provides great flexibility for experimenting with novel graph metrics.

Defining a Custom Feature Function:

Your custom feature function must adhere to the following structure:

  1. Input: It must accept a single argument, which will be a graph object. This object provides access to the graph's structure (nodes, edges) and properties (e.g., graph.nodes, graph.graph_id, graph.G which is the underlying NetworkX or iGraph object).
  2. Output: It must return a pandas.DataFrame with the following specific columns in order:
    • "node_id": Identifiers for the nodes for which features are computed.
    • "graph_id": The identifier of the graph to which these nodes belong.
    • One or more feature columns: These columns should contain the computed feature values. The naming convention for these columns should ideally follow the pattern your_feature_name_0, your_feature_name_1, etc., if your feature has multiple components or is expanded over hops (though a single feature column like your_feature_name is also acceptable).

Example:

Here's how you can define a simple custom feature function and use it:

import pandas as pd

# 1. Define your custom feature function
# This function must be defined at the top level of your script/module
# if you plan to use multiprocessing (n_jobs != 1).
def my_node_degree_squared(graph):
    nodes = list(graph.nodes) # or range(graph.G.vcount()) for igraph if nodes are 0-indexed
    graph_id = graph.graph_id
    
    if hasattr(graph.G, 'degree'): # Handles both NetworkX and iGraph
        if isinstance(graph.G, nx.Graph): # NetworkX
            degrees = [graph.G.degree(n) for n in nodes]
        else: # iGraph
            degrees = graph.G.degree(nodes)
    else:
        raise TypeError("Graph object does not have a degree method.")
        
    degree_squared_values = [d**2 for d in degrees]
    
    df = pd.DataFrame({
        'node_id': nodes,
        'graph_id': graph_id,
        'degree_sq_0': degree_squared_values
    })
    # Ensure the correct column order
    return df[['node_id', 'graph_id', 'degree_sq_0']]

# 2. Prepare the list of custom feature methods
my_feature_methods = [
    {"feature_name": "my_degree_squared", "feature_function": my_node_degree_squared}
]

# 3. Pass it to compute_node_features
# Initialize NEExT and load your graph_collection as shown in the Quick Start
# nxt = NEExT()
# graph_collection = nxt.read_from_csv(...)

features = nxt.compute_node_features(
    graph_collection=graph_collection,
    feature_list=["page_rank", "my_degree_squared"], # Include your custom feature name
    feature_vector_length=3, # Applies to built-in features that use it
    my_feature_methods=my_feature_methods
)

print(features.features_df.head())

When you include "my_degree_squared" in the feature_list and provide my_feature_methods, NEExT will automatically register and compute your custom function. If "all" is in feature_list, your custom registered function will also be included in the computation.

πŸ“¦ Installation

Basic Installation

pip install NEExT

Development Installation

# Clone the repository
git clone https://github.com/ashdehghan/NEExT.git
cd NEExT

# Install with development dependencies
pip install -e ".[dev]"

Additional Components

# For running tests
pip install -e ".[test]"

# For building documentation
pip install -e ".[docs]"

# For running experiments
pip install -e ".[experiments]"

# Install all components
pip install -e ".[dev,test,docs,experiments]"

πŸš€ Quick Start

Basic Usage

from NEExT import NEExT

# Initialize the framework
nxt = NEExT()
nxt.set_log_level("INFO")

# Load graph data
graph_collection = nxt.read_from_csv(
    edges_path="edges.csv",
    node_graph_mapping_path="node_graph_mapping.csv",
    graph_label_path="graph_labels.csv",
    reindex_nodes=True,
    filter_largest_component=True,
    graph_type="igraph"
)

# Compute node features
features = nxt.compute_node_features(
    graph_collection=graph_collection,
    feature_list=["all"],
    feature_vector_length=3
)

# Compute graph embeddings
embeddings = nxt.compute_graph_embeddings(
    graph_collection=graph_collection,
    features=features,
    embedding_algorithm="approx_wasserstein",
    embedding_dimension=3
)

# Train a classifier
model_results = nxt.train_ml_model(
    graph_collection=graph_collection,
    embeddings=embeddings,
    model_type="classifier",
    sample_size=50
)

Working with Large Graphs

NEExT supports node sampling for handling large graphs:

# Load graphs with 70% of nodes
graph_collection = nxt.read_from_csv(
    edges_path="edges.csv",
    node_graph_mapping_path="node_graph_mapping.csv",
    node_sample_rate=0.7  # Use 70% of nodes
)

Feature Importance Analysis

# Compute feature importance
importance_df = nxt.compute_feature_importance(
    graph_collection=graph_collection,
    features=features,
    feature_importance_algorithm="supervised_fast",
    embedding_algorithm="approx_wasserstein"
)

πŸ“Š Experiments

NEExT includes several pre-built experiments in the examples/experiments directory:

Node Sampling Experiment

Investigates the effect of node sampling on classifier accuracy:

cd examples/experiments
python node_sampling_experiments.py

πŸ“ Input File Formats

edges.csv

src_node_id,dest_node_id
0,1
1,2
...

node_graph_mapping.csv

node_id,graph_id
0,1
1,1
2,2
...

graph_labels.csv

graph_id,graph_label
1,0
2,1
...

πŸ› οΈ Development

Running Tests

# Run all tests
pytest

# Run with coverage
pytest --cov=NEExT

# Run specific test file
pytest tests/test_node_sampling.py

Building Documentation

cd docs
make html

Code Style

The project uses several tools for code quality:

# Format code
black .

# Sort imports
isort .

# Check style
flake8 .

# Type checking
mypy .

🀝 Contributing

  1. Fork the repository
  2. Create a feature branch
  3. Make your changes
  4. Run tests
  5. Submit a pull request

πŸ“„ License

This project is licensed under the MIT License - see the LICENSE file for details.

πŸ‘₯ Authors

πŸ™ Acknowledgments

  • NetworkX team for the graph algorithms
  • iGraph team for the efficient graph operations
  • Scikit-learn team for machine learning components

πŸ“§ Contact

For questions and support:

πŸ”„ Version History

  • 0.1.0
    • Initial release
    • Basic graph operations
    • Node feature computation
    • Graph embeddings
    • Machine learning integration

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Packages

No packages published

Contributors 3

  •  
  •  
  •  
0