8000 GitHub - beedrill/RLTL: to be added
[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to content

beedrill/RLTL

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

README

README for Traffic Light Optimization using DQN

To cite this work:

@article{zhang2018partially,
  title={Partially Observable Reinforcement Learning for Intelligent Transportation Systems},
  author={Zhang, Rusheng and Ishikawa, Akihiro and Wang, Wenli and Striner, Benjamin and Tonguz, Ozan},
  journal={arXiv preprint arXiv:1807.01628},
  year={2018}
}

Setup environment

  • virtualenv --system-site-packages DQN_ENV
    • need to inherit pysumo
  • source DQN_ENV/bin/activate
  • pip install --upgrade pip
  • pip install --upgrade tensorflow
  • if GPU
    • pip install --upgrade tensorflow-gpu
  • pip install -U -r requirements.txt

Single Agent

Train

python run_rltl.py
  • if you run on CPU, make sure to put --cpu
  • default is sumo, in order to use pysumo make sure to put --pysumo

Evaluate

python run_rltl.py --mode test --load [weights.hdf5]

Multi Agents

Train

python run_multiagents_rltl.py
  • if you run on CPU, make sure to put --cpu
  • default is sumo, in order to use pysumo make sure to put --pysumo

Evaluate

python run_multiagents_rltl.py --mode test --load [weights.hdf5]
  • currently, weights are saved as ~weights_[agent id].hdf5, so when you load, remove letters after weights
    • e.g. DQN_SUMO_best_weights_0.hdf5 => DQN_SUMO_best_weights

About

to be added

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 3

  •  
  •  
  •  
0