IAAI-140 An End-to-End Solution for Named Entity Recognition in eCommerce Search ( The Home Depot)
Bhushan * Mitchell
Priyanka * Sean
Thomas * Faizan
Collobert, R.; and Weston, J. 2008. A unified architecture
for natural language processing: Deep neural networks with
multitask learning. In Proceedings of the 25th international
conference on Machine learning, 160–167.
Collobert, R.; Weston, J.; Bottou, L.; Karlen, M.;
Kavukcuoglu, K.; and Kuksa, P. 2011. Natural language processing
(almost) from scratch. Journal of machine learning
research 12(Aug): 2493–2537.
Cowan, B.; Zethelius, S.; Luk, B.; Baras, T.; Ukarde, P.;
and Zhang, D. 2015. Named Entity Recognition in Travelrelated
Search Queries. In Proceedings of the Twenty-
Ninth AAAI Conference on Artificial Intelligence, AAAI’15,
3935–3941. AAAI Press. ISBN 0-262-51129-0. URL
http://dl.acm.org/citation.cfm?id=2888116.2888261.
Devlin, J.; Chang, M.-W.; Lee, K.; and Toutanova, K. 2018.
Bert: Pre-training of deep bidirectional transformers for language
understanding. arXiv preprint arXiv:1810.04805 .
Guo, J.; Xu, G.; Cheng, X.; and Li, H. 2009. Named entity
recognition in query. In Proceedings of the 32nd international
ACM SIGIR conference on Research and development
in information retrieval, 267–274. ACM.
Huang, Z.; Xu, W.; and Yu, K. 2015. Bidirectional
LSTM-CRF models for sequence tagging. arXiv preprint
arXiv:1508.01991 .
Koehn, P.; and Knowles, R. 2017. Six challenges for neural
machine translation. arXiv preprint arXiv:1706.03872 .
Lample, G.; Ballesteros, M.; Subramanian, S.; Kawakami,
K.; and Dyer, C. 2016. Neural Architectures for Named
Entity Recognition. CoRR abs/1603.01360. URL http:
//arxiv.org/abs/1603.01360.
Lee, C. 2017. LSTM-CRF models for named entity recognition.
IEICE Transactions on Information and Systems
100(4): 882–887.
Li, J.; Sun, A.; Han, J.; and Li, C. 2020. A survey on deep
learning for named entity recognition. IEEE Transactions
on Knowledge and Data Engineering .
Liu, Y.; Meng, F.; Zhang, J.; Xu, J.; Chen, Y.; and Zhou,
J. 2019. Gcdt: A global context enhanced deep transition
architecture for sequence labeling. arXiv preprint
arXiv:1906.02437 .
Ma, X.; and Hovy, E. 2016. End-to-end sequence labeling
via bi-directional lstm-cnns-crf. arXiv preprint
arXiv:1603.01354 .
Majumder, B. P.; Subramanian, A.; Krishnan, A.; Gandhi,
S.; and More, A. 2018. Deep Recurrent Neural Networks for
Product Attribute Extraction in ECommerce. arXiv preprint
ArXiv:1803.11284 .
Mikolov, T.; Chen, K.; Corrado, G.; and Dean, J. 2013. Efficient
estimation of word representations in vector space.
arXiv preprint arXiv:1301.3781 .
More, A. 2016. Attribute Extraction from Product Titles in
eCommerce. CoRR abs/1608.04670. URL http://arxiv.org/
abs/1608.0467
5126
0.
Nadeau, D.; and Sekine, S. 2007. A survey of named entity
recognition and classification. Lingvisticæ Investigationes
30(1): 3–26. ISSN 0378-4169. doi:https://doi.org/10.1075/
li.30.1.03nad. URL https://www.jbe-platform.com/content/
journals/10.1075/li.30.1.03nad.
Pennington, J.; Socher, R.; and Manning, C. 2014. Glove:
Global vectors for word representation. In Proceedings of
the 2014 conference on empirical methods in natural language
processing (EMNLP), 1532–1543.
Peters, M. E.; Neumann, M.; Iyyer, M.; Gardner, M.; Clark,
C.; Lee, K.; and Zettlemoyer, L. 2018. Deep contextualized
word representations. arXiv preprint arXiv:1802.05365 .
Putthividhya, D. P.; and Hu, J. 2011. Bootstrapped Named
Entity Recognition for Product Attribute Extraction. In Proceedings
of the Conference on Empirical Methods in Natural
Language Processing, EMNLP ’11, 1557–1567. Stroudsburg,
PA, USA: Association for Computational Linguistics.
ISBN 978-1-937284-11-4. URL http://dl.acm.org/citation.
cfm?id=2145432.2145598.
Sang, E. F.; and De Meulder, F. 2003. Introduction to the
CoNLL-2003 shared task: Language-independent named
entity recognition. arXiv preprint cs/0306050 .
Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones,
L.; Gomez, A. N.; Kaiser, Ł.; and Polosukhin, I. 2017. Attention
is all you need. In Advances in neural information
processing systems, 5998–6008.
Wen, M.; Vasthimal, D. K.; Lu, A.; Wang, T.; and Guo, A.
2019. Building Large-Scale Deep Learning System for Entity
Recognition in E-Commerce Search. In Proceedings of
the 6th IEEE/ACM International Conference on Big Data
Computing, Applications and Technologies, 149–154.
Wu, C.-y.; Ahmed, A.; Kumar, G. R.; and Datta, R. 2017.
Predicting Latent Structured Intents from Shopping Queries.
WWW 2017 .
Yadav, V.; and Bethard, S. 2019. A survey on recent advances
in named entity recognition