8000 Added msmarco v2.1 doc segmented splade-v3 bindings by clides · Pull Request #2890 · castorini/anserini · GitHub
[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to content

Added msmarco v2.1 doc segmented splade-v3 bindings #2890

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 21 commits into from
Jul 9, 2025
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
@@ -0,0 +1,92 @@
# Anserini Regressions: MS MARCO V2.1 Document Ranking

**Model**: [SPLADE-v3](https://arxiv.org/abs/2403.06789) (using cached queries)

This page describes regression experiments for document ranking _on the segmented version_ of the MS MARCO V2.1 document corpus using the dev queries, which is integrated into Anserini's regression testing framework.
This corpus was derived from the MS MARCO V2 _segmented_ document corpus and prepared for the TREC 2024 RAG Track.

The model itself can be download [here](https://huggingface.co/naver/splade-v3).
See the [official SPLADE repo](https://github.com/naver/splade) and the following paper for more details:

> Carlos Lassance, Hervé Déjean, Thibault Formal, and Stéphane Clinchant. [SPLADE-v3: New baselines for SPLADE.](https://arxiv.org/abs/2403.06789) _arXiv:2403.06789_.

In these experiments, we are using cached queries (i.e., cached results of query encoding).

The exact configurations for these regressions are stored in [this YAML file](../../src/main/resources/regression/msmarco-v2.1-doc-segmented.splade-v3.cached.yaml).
Note that this page is automatically generated from [this template](../../src/main/resources/docgen/templates/msmarco-v2.1-doc-segmented.splade-v3.cached.template) as part of Anserini's regression pipeline, so do not modify this page directly; modify the template instead.

From one of our Waterloo servers (e.g., `orca`), the following command will perform the complete regression, end to end:

```
python src/main/python/run_regression.py --index --verify --search --regression msmarco-v2.1-doc-segmented.splade-v3.cached
```

## Indexing

Typical indexing command:

```
bin/run.sh io.anserini.index.IndexCollection \
-threads 24 \
-collection JsonVectorCollection \
-input /path/to/msmarco-v2.1-doc-segmented-splade-v3 \
-generator DefaultLuceneDocumentGenerator \
-index indexes/lucene-inverted.msmarco-v2.1-doc-segmented.splade-v3/ \
-impact -pretokenized \
>& logs/log.msmarco-v2.1-doc-segmented-splade-v3 &
```

The setting of `-input` should be a directory containing the compressed `jsonl` files that comprise the corpus.

For additional details, see explanation of [common indexing options](../../docs/common-indexing-options.md).

## Retrieval

Topics and qrels are stored [here](https://github.com/castorini/anserini-tools/tree/master/topics-and-qrels), which is linked to the Anserini repo as a submodule.
These evaluation resources are from the original V2 corpus, but have been "projected" over to the V2.1 corpus.

After indexing has completed, you should be able to perform retrieval as follows:

```
bin/run.sh io.anserini.search.SearchCollection \
-index indexes/lucene-inverted.msmarco-v2.1-doc-segmented.splade-v3/ \
-topics tools/topics-and-qrels/topics.msmarco-v2-doc.dev.tsv.gz \
-topicReader TsvString \
-output runs/run.msmarco-v2.1-doc-segmented-splade-v3.splade-v3-cached.topics.msmarco-v2-doc.dev.txt \
-impact -pretokenized -removeQuery -hits 10000 -selectMaxPassage -selectMaxPassage.delimiter "#" -selectMaxPassage.hits 1000 &
bin/run.sh io.anserini.search.SearchCollection \
-index indexes/lucene-inverted.msmarco-v2.1-doc-segmented.splade-v3/ \
-topics tools/topics-and-qrels/topics.msmarco-v2-doc.dev2.tsv.gz \
-topicReader TsvString \
-output runs/run.msmarco-v2.1-doc-segmented-splade-v3.splade-v3-cached.topics.msmarco-v2-doc.dev2.txt \
-impact -pretokenized -removeQuery -hits 10000 -selectMaxPassage -selectMaxPassage.delimiter "#" -selectMaxPassage.hits 1000 &
```

Evaluation can be performed using `trec_eval`:

```
bin/trec_eval -c -m recall.100 tools/topics-and-qrels/qrels.msmarco-v2.1-doc.dev.txt runs/run.msmarco-v2.1-doc-segmented-splade-v3.splade-v3-cached.topics.msmarco-v2-doc.dev.txt
bin/trec_eval -c -m recall.1000 tools/topics-and-qrels/qrels.msmarco-v2.1-doc.dev.txt runs/run.msmarco-v2.1-doc-segmented-splade-v3.splade-v3-cached.topics.msmarco-v2-doc.dev.txt
bin/trec_eval -c -M 100 -m map -c -M 100 -m recip_rank tools/topics-and-qrels/qrels.msmarco-v2.1-doc.dev.txt runs/run.msmarco-v2.1-doc-segmented-splade-v3.splade-v3-cached.topics.msmarco-v2-doc.dev.txt
bin/trec_eval -c -m recall.100 tools/topics-and-qrels/qrels.msmarco-v2.1-doc.dev2.txt runs/run.msmarco-v2.1-doc-segmented-splade-v3.splade-v3-cached.topics.msmarco-v2-doc.dev2.txt
bin/trec_eval -c -m recall.1000 tools/topics-and-qrels/qrels.msmarco-v2.1-doc.dev2.txt runs/run.msmarco-v2.1-doc-segmented-splade-v3.splade-v3-cached.topics.msmarco-v2-doc.dev2.txt
bin/trec_eval -c -M 100 -m map -c -M 100 -m recip_rank tools/topics-and-qrels/qrels.msmarco-v2.1-doc.dev2.txt runs/run.msmarco-v2.1-doc-segmented-splade-v3.splade-v3-cached.topics.msmarco-v2-doc.dev2.txt
```

## Effectiveness

With the above commands, you should be able to reproduce the following results:

| **MAP@100** | **SPLADE-v3**|
|:-------------------------------------------------------------------------------------------------------------|-----------|
| [MS MARCO V2 Doc: Dev](https://microsoft.github.io/msmarco/TREC-Deep-Learning.html) | 0.2846 |
| [MS MARCO V2 Doc: Dev2](https://microsoft.github.io/msmarco/TREC-Deep-Learning.html) | 0.2836 |
| **MRR@100** | **SPLADE-v3**|
| [MS MARCO V2 Doc: Dev](https://microsoft.github.io/msmarco/TREC-Deep-Learning.html) | 0.2874 |
| [MS MARCO V2 Doc: Dev2](https://microsoft.github.io/msmarco/TREC-Deep-Learning.html) | 0.2869 |
| **R@100** | **SPLADE-v3**|
| [MS MARCO V2 Doc: Dev](https://microsoft.github.io/msmarco/TREC-Deep-Learning.html) | 0.8446 |
| [MS MARCO V2 Doc: Dev2](https://microsoft.github.io/msmarco/TREC-Deep-Learning.html) | 0.8462 |
| **R@1000** | **SPLADE-v3**|
| [MS MARCO V2 Doc: Dev](https://microsoft.github.io/msmarco/TREC-Deep-Learning.html) | 0.9390 |
| [MS MARCO V2 Doc: Dev2](https://microsoft.github.io/msmarco/TREC-Deep-Learning.html) | 0.9407 |
Original file line number Diff line number Diff line change
@@ -0,0 +1,92 @@
# Anserini Regressions: MS MARCO V2.1 Document Ranking

**Model**: [SPLADE-v3](https://arxiv.org/abs/2403.06789) (using ONNX for on-the-fly query encoding)

This page describes regression experiments for document ranking _on the segmented version_ of the MS MARCO V2.1 document corpus using the dev queries, which is integrated into Anserini's regression testing framework.
This corpus was derived from the MS MARCO V2 _segmented_ document corpus and prepared for the TREC 2024 RAG Track.

The model itself can be download [here](https://huggingface.co/naver/splade-v3).
See the [official SPLADE repo](https://github.com/naver/splade) and the following paper for more details:

> Carlos Lassance, Hervé Déjean, Thibault Formal, and Stéphane Clinchant. [SPLADE-v3: New baselines for SPLADE.](https://arxiv.org/abs/2403.06789) _arXiv:2403.06789_.

In these experiments, we are using ONNX to perform query encoding on the fly.

The exact configurations for these regressions are stored in [this YAML file](../../src/main/resources/regression/msmarco-v2.1-doc-segmented.splade-v3.onnx.yaml).
Note that this page is automatically generated from [this template](../../src/main/resources/docgen/templates/msmarco-v2.1-doc-segmented.splade-v3.onnx.template) as part of Anserini's regression pipeline, so do not modify this page directly; modify the template instead.

From one of our Waterloo servers (e.g., `orca`), the following command will perform the complete regression, end to end:

```
python src/main/python/run_regression.py --index --verify --search --regression msmarco-v2.1-doc-segmented.splade-v3.onnx
```

## Indexing

Typical indexing command:

```
bin/run.sh io.anserini.index.IndexCollection \
-threads 24 \
-collection JsonVectorCollection \
-input /path/to/msmarco-v2.1-doc-segmented-splade-v3 \
-generator DefaultLuceneDocumentGenerator \
-index indexes/lucene-inverted.msmarco-v2.1-doc-segmented.splade-v3/ \
-impact -pretokenized \
>& logs/log.msmarco-v2.1-doc-segmented-splade-v3 &
```

The setting of `-input` should be a directory containing the compressed `jsonl` files that comprise the corpus.

For additional details, see explanation of [common indexing options](../../docs/common-indexing-options.md).

## Retrieval

Topics and qrels are stored [here](https://github.com/castorini/anserini-tools/tree/master/topics-and-qrels), which is linked to the Anserini repo as a submodule.
These evaluation resources are from the original V2 corpus, but have been "projected" over to the V2.1 corpus.

After indexing has completed, you should be able to perform retrieval as follows:

```
bin/run.sh io.anserini.search.SearchCollection \
-index indexes/lucene-inverted.msmarco-v2.1-doc-segmented.splade-v3/ \
-topics tools/topics-and-qrels/topics.msmarco-v2-doc.dev.txt \
-topicReader TsvString \
-output runs/run.msmarco-v2.1-doc-segmented-splade-v3.splade-v3-onnx.topics.msmarco-v2-doc.dev.txt \
-impact -pretokenized -removeQuery -hits 10000 -selectMaxPassage -selectMaxPassage.delimiter "#" -selectMaxPassage.hits 1000 -encoder SpladeV3 &
bin/run.sh io.anserini.search.SearchCollection \
-index indexes/lucene-inverted.msmarco-v2.1-doc-segmented.splade-v3/ \
-topics tools/topics-and-qrels/topics.msmarco-v2-doc.dev2.txt \
-topicReader TsvString \
-output runs/run.msmarco-v2.1-doc-segmented-splade-v3.splade-v3-onnx.topics.msmarco-v2-doc.dev2.txt \
-impact -pretokenized -removeQuery -hits 10000 -selectMaxPassage -selectMaxPassage.delimiter "#" -selectMaxPassage.hits 1000 -encoder SpladeV3 &
```

Evaluation can be performed using `trec_eval`:

```
bin/trec_eval -c -m recall.100 tools/topics-and-qrels/qrels.msmarco-v2.1-doc.dev.txt runs/run.msmarco-v2.1-doc-segmented-splade-v3.splade-v3-onnx.topics.msmarco-v2-doc.dev.txt
bin/trec_eval -c -m recall.1000 tools/topics-and-qrels/qrels.msmarco-v2.1-doc.dev.txt runs/run.msmarco-v2.1-doc-segmented-splade-v3.splade-v3-onnx.topics.msmarco-v2-doc.dev.txt
bin/trec_eval -c -M 100 -m map -c -M 100 -m recip_rank tools/topics-and-qrels/qrels.msmarco-v2.1-doc.dev.txt runs/run.msmarco-v2.1-doc-segmented-splade-v3.splade-v3-onnx.topics.msmarco-v2-doc.dev.txt
bin/trec_eval -c -m recall.100 tools/topics-and-qrels/qrels.msmarco-v2.1-doc.dev2.txt runs/run.msmarco-v2.1-doc-segmented-splade-v3.splade-v3-onnx.topics.msmarco-v2-doc.dev2.txt
bin/trec_eval -c -m recall.1000 tools/topics-and-qrels/qrels.msmarco-v2.1-doc.dev2.txt runs/run.msmarco-v2.1-doc-segmented-splade-v3.splade-v3-onnx.topics.msmarco-v2-doc.dev2.txt
bin/trec_eval -c -M 100 -m map -c -M 100 -m recip_rank tools/topics-and-qrels/qrels.msmarco-v2.1-doc.dev2.txt runs/run.msmarco-v2.1-doc-segmented-splade-v3.splade-v3-onnx.topics.msmarco-v2-doc.dev2.txt
```

## Effectiveness

With the above commands, you should be able to reproduce the following results:

| **MAP@100** | **SPLADE-v3**|
|:-------------------------------------------------------------------------------------------------------------|-----------|
| [MS MARCO V2 Doc: Dev](https://microsoft.github.io/msmarco/TREC-Deep-Learning.html) | 0.2846 |
| [MS MARCO V2 Doc: Dev2](https://microsoft.github.io/msmarco/TREC-Deep-Learning.html) | 0.2836 |
| **MRR@100** | **SPLADE-v3**|
| [MS MARCO V2 Doc: Dev](https://microsoft.github.io/msmarco/TREC-Deep-Learning.html) | 0.2874 |
| [MS MARCO V2 Doc: Dev2](https://microsoft.github.io/msmarco/TREC-Deep-Learning.html) | 0.2869 |
| **R@100** | **SPLADE-v3**|
| [MS MARCO V2 Doc: Dev](https://microsoft.github.io/msmarco/TREC-Deep-Learning.html) | 0.8446 |
| [MS MARCO V2 Doc: Dev2](https://microsoft.github.io/msmarco/TREC-Deep-Learning.html) | 0.8462 |
| **R@1000** | **SPLADE-v3**|
| [MS MARCO V2 Doc: Dev](https://microsoft.github.io/msmarco/TREC-Deep-Learning.html) | 0.9390 |
| [MS MARCO V2 Doc: Dev2](https://microsoft.github.io/msmarco/TREC-Deep-Learning.html) | 0.9407 |
Original file line number Diff line number Diff line change
@@ -0,0 +1,82 @@
# Anserini Regressions: TREC 2024 RAG Track Test Topics

**Model**: [SPLADE-v3](https://arxiv.org/abs/2403.06789) (using cached queries)

This page describes regression experiments for ranking _on the segmented version_ of the MS MARCO V2.1 document corpus using the test topics (= queries in TREC parlance), which is integrated into Anserini's regression testing framework.
This corpus was derived from the MS MARCO V2 _segmented_ document corpus and prepared for the TREC 2024 RAG Track.

The model itself can be download [here](https://huggingface.co/naver/splade-v3).
See the [official SPLADE repo](https://github.com/naver/splade) and the following paper for more details:

> Carlos Lassance, Hervé Déjean, Thibault Formal, and Stéphane Clinchant. [SPLADE-v3: New baselines for SPLADE.](https://arxiv.org/abs/2403.06789) _arXiv:2403.06789_.

In these experiments, we are using cached queries (i.e., cached results of query encoding).

Evaluation uses qrels over 89 topics from the TREC 2024 RAG Track test set.
These qrels represent manual relevance judgments from NIST assessors, contrasted with automatically generated UMBRELA judgments.
See the following paper for more details:

> Shivani Upadhyay, Ronak Pradeep, Nandan Thakur, Daniel Campos, Nick Craswell, Ian Soboroff, and Jimmy Lin. A Large-Scale Study of Relevance Assessments with Large Language Models Using UMBRELA. _Proceedings of the 2025 International ACM SIGIR Conference on Innovative Concepts and Theories in Information Retrieval (ICTIR 2025)_, 2025.

The exact configurations for these regressions are stored in [this YAML file](../../src/main/resources/regression/rag24-doc-segmented-test-nist.splade-v3.cached.yaml).
Note that this page is automatically generated from [this template](../../src/main/resources/docgen/templates/rag24-doc-segmented-test-nist.splade-v3.cached.template) as part of Anserini's regression pipeline, so do not modify this page directly; modify the template instead and then run `bin/build.sh` to rebuild the documentation.

From one of our Waterloo servers (e.g., `orca`), the following command will perform the complete regression, end to end:

```
python src/main/python/run_regression.py --index --verify --search --regression rag24-doc-segmented-test-nist.splade-v3.cached
```

## Indexing

Sample indexing command:

```
bin/run.sh io.anserini.index.IndexCollection \
-threads 24 \
-collection JsonVectorCollection \
-input /path/to/msmarco-v2.1-doc-segmented-splade-v3 \
-generator DefaultLuceneDocumentGenerator \
-index indexes/lucene-inverted.msmarco-v2.1-doc-segmented.splade-v3/ \
-impact -pretokenized \
>& logs/log.msmarco-v2.1-doc-segmented-splade-v3 &
```

The important indexing options to note here are `-impact -pretokenized`: the first tells Anserini not to encode BM25 doclengths into Lucene's norms (which is the default) and the second option says not to apply any additional tokenization on the pre-encoded tokens.
For additional details, see explanation of [common indexing options](../../docs/common-indexing-options.md).

## Retrieval

Here, we are using 89 test topics from the TREC 2024 RAG Track with manual relevance judgments from NIST assessors.
Topics and qrels are stored [here](https://github.com/castorini/anserini-tools/tree/master/topics-and-qrels), which is linked to the Anserini repo as a submodule.

After indexing has completed, you should be able to perform retrieval as follows:

```
bin/run.sh io.anserini.search.SearchCollection \
-index indexes/lucene-inverted.msmarco-v2.1-doc-segmented.splade-v3/ \
-topics tools/topics-and-qrels/topics.rag24.test.splade-v3.tsv.gz \
-topicReader TsvString \
-output runs/run.msmarco-v2.1-doc-segmented-splade-v3.splade-v3-cached.topics.rag24.test.splade-v3.txt \
-impact -pretokenized -removeQuery -hits 1000 &
```

Evaluation can be performed using `trec_eval`:

```
bin/trec_eval -c -m ndcg_cut.20 tools/topics-and-qrels/qrels.rag24.test.txt runs/run.msmarco-v2.1-doc-segmented-splade-v3.splade-v3-cached.topics.rag24.test.splade-v3.txt
bin/trec_eval -c -m ndcg_cut.100 tools/topics-and-qrels/qrels.rag24.test.txt runs/run.msmarco-v2.1-doc-segmented-splade-v3.splade-v3-cached.topics.rag24.test.splade-v3.txt
bin/trec_eval -c -m recall.100 tools/topics-and-qrels/qrels.rag24.test.txt runs/run.msmarco-v2.1-doc-segmented-splade-v3.splade-v3-cached.topics.rag24.test.splade-v3.txt
```

## Effectiveness

With the above commands, you should be able to reproduce the following results:

| **nDCG@20** | **SPLADE-v3**|
|:-------------------------------------------------------------------------------------------------------------|-----------|
| RAG 24: Test queries | 0.4642 |
| **nDCG@100** | **SPLADE-v3**|
| RAG 24: Test queries | 0.4349 |
| **R@100** | **SPLADE-v3**|
| RAG 24: Test queries | 0.3198 |
Loading
0