10000 GitHub - cfarkas/preeclampsia_ml: machine learning method for preeclampsia
[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to content

cfarkas/preeclampsia_ml

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

81 Commits
 
 
 
 
 
 
 
 

Repository files navigation

preeclampsia_ml

machine learning method for prediction outcomes in preeclampsia

Install & Execution

git clone https://github.com/cfarkas/preeclampsia_ml.git
cd preeclampsia_ml

# Help
python3 main.py --help

# Install
python3 main.py --install_conda

# Test Run: Use all data and then re-train with best features. 
python3 main.py --input ./example/dataframe.csv --output ./example/test_run/
python3 main.py --input ./example/test_run/best_features_overall_subset.csv --output ./example/test_run_subset/

This pipeline systematically tests multiple outcomes from a given dataset as follows:

  1. It trains a set of classifiers (Logistic Regression, SVM, Random Forest, MLP, etc.) on each classification outcome.
  2. It computes recall (macro‐averaged) as the primary metric.
  3. It generates:
  • Confusion Matrix PDFs (showing each method’s predictions vs. actual labels).
  • Bar Charts of permutation importances (PDF B).
  • Radial Plots of permutation importances (PDF C) to visualize which features most influenced each classifier.
  • Regression (e.g., RandomForestRegressor, GradientBoostingRegressor, for continuous outcomes like gestational_age_delivery and newborn_weight):
  1. Will select best features that can be inputted again in the pipeline to benchmark performance with those.

About

machine learning method for preeclampsia

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 2

  •  
  •  

Languages

0