8000 GitHub - cran/tidyplots: :exclamation: This is a read-only mirror of the CRAN R package repository. tidyplots — Tidy Plots for Scientific Papers. Homepage: https://github.com/jbengler/tidyplots, https://jbengler.github.io/tidyplots/ Report bugs for this package: https://github.com/jbengler/tidyplots/issues
[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to content
/ tidyplots Public

❗ This is a read-only mirror of the CRAN R package repository. tidyplots — Tidy Plots for Scientific Papers. Homepage: https://github.com/jbengler/tidyplotshttps://jbengler.github.io/tidyplots/ Report bugs for this package: https://github.com/jbengler/tidyplots/issues

License

Notifications You must be signed in to change notification settings

cran/tidyplots

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

5 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

tidyplots tidyplots website

R-CMD-check CRAN status

The goal of tidyplots is to streamline the creation of publication-ready plots for scientific papers. It allows to gradually add, remove and adjust plot components using a consistent and intuitive syntax.

Citation

Engler, Jan Broder. 2025. “Tidyplots Empowers Life Scientists With Easy Code-Based Data Visualization.” iMeta e70018. https://doi.org/10.1002/imt2.70018

Installation

You can install the released version of tidyplots from CRAN with:

install.packages("tidyplots")

And the development version from GitHub with:

# install.packages("pak")
pak::pak("jbengler/tidyplots")

Cheatsheet

This cheatsheet gives a high level overview of available functions.

tidyplots cheatsheet

Usage

Here are some examples.

Also have a look at the getting started guide and the full documentation. For more example plots, check out the tidyplots use cases website.

library(tidyplots)

study |> 
  tidyplot(x = treatment, y = score, color = treatment) |> 
  add_mean_bar(alpha = 0.4) |> 
  add_sem_errorbar() |> 
  add_data_points_beeswarm()

energy |> 
  tidyplot(x = year, y = energy, color = energy_source) |> 
  add_barstack_absolute()

energy |> 
  dplyr::filter(year %in% c(2005, 2010, 2015, 2020)) |> 
  tidyplot(y = energy, color = energy_source) |> 
  add_donut() |> 
  adjust_size(width = 25, height = 25) |>
  split_plot(by = year)

energy_week |> 
  tidyplot(x = date, y = power, color = energy_source) |> 
  add_areastack_absolute()

energy_week |> 
  tidyplot(x = date, y = power, color = energy_source) |> 
  add_areastack_relative()

study |> 
  tidyplot(x = group, y = score, color = dose) |> 
  add_mean_bar(alpha = 0.4) |> 
  add_mean_dash() |> 
  add_mean_value()

time_course |>
  tidyplot(x = day, y = score, color = treatment) |>
  add_mean_line() |>
  add_mean_dot() |>
  add_sem_ribbon()

climate |>
  tidyplot(x = month, y = year, color = max_temperature) |>
  add_heatmap()

study |> 
  tidyplot(x = treatment, y = score, color = treatment) |> 
  add_boxplot() |> 
  add_test_pvalue(ref.group = 1)

gene_expression |> 
  dplyr::filter(external_gene_name %in% c("Apol6", "Col5a3", "Vgf", "Bsn")) |> 
  tidyplot(x = condition, y = expression, color = sample_type) |> 
  add_mean_dash() |> 
  add_sem_errorbar() |> 
  add_data_points_beeswarm() |> 
  add_test_asterisks(hide_info = TRUE) |> 
  remove_x_axis_title() |> 
  adjust_size(width = 25, height = 25) |> 
  split_plot(by = external_gene_name)

study |> 
  tidyplot(x = treatment, y = score, color = treatment) |> 
  add_mean_bar(alpha = 0.4) |> 
  add_sem_errorbar() |> 
  add_data_points_beeswarm() |> 
  view_plot(title = "Default color scheme: 'friendly'") |> 
  adjust_colors(colors_discrete_apple) |> 
  view_plot(title = "Alternative color scheme: 'apple'")

Documentation

Acknowledgements

I would like to thank Lars Binkle-Ladisch for our insightful discussions and for consistently challenging my decisions regarding the naming of functions and their arguments.

Many thanks to the R and tidyverse communities. tidyplots is built upon their software and coding paradigms, and it would not have been possible without their contributions.

tidyplots relies on several fantastic packages that handle all the heavy lifting behind the scenes. These include cli, dplyr, forcats, ggbeeswarm, ggplot2, ggpubr, ggrastr, ggrepel, glue, Hmisc, htmltools, lifecycle, patchwork, purrr, rlang, scales, stringr, tidyr, and tidyselect.

About

❗ This is a read-only mirror of the CRAN R package repository. tidyplots — Tidy Plots for Scientific Papers. Homepage: https://github.com/jbengler/tidyplotshttps://jbengler.github.io/tidyplots/ Report bugs for this package: https://github.com/jbengler/tidyplots/issues

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages

0