8000 GitHub - crazyn2/pt-iaead
[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to content

crazyn2/pt-iaead

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

2 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Improved Autoencoder for Unsupervised Anomaly Detection

Introduction

This is the official implementation of the IAEAD framework presented by "Improved Autoencoder for Unsupervised Anomaly Detection ". The codes are used to reproduce experimental results of CAE and IAEAD reported in the paper.

Requirements

  • Python 3.6
  • PyTorch 1.3.1 (GPU)
  • Keras 2.2.0
  • Tensorflow 1.8.0 (GPU)
  • sklearn 0.19.1

Usage

To obtain the results of IAEAD on MNIST with default settings, simply run the following command:

python main.py --run_times=1 --gpu_id=0 --method=RAE --dataset=mnist --ratio=0.1 --para_lambda=5e-5

After training, to print UAD results for a specific algorithm in AUROC/AUPR, run:

# AUROC of IPAE on CIFAR10 with outlier ratio 0.1
python evaluate_roc_auc.py --dataset cifar10 --algo_name iae-0.1

# AUPR of IPAE on MNIST with outlier ratio 0.25 and inliers as the postive class
python evaluate_pr_auc.py --dataset mnist --algo_name iae-0.1 --postive inliers

Credit

License

IAEAD is released under the MIT License.

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%
0