8000 GitHub - duchesnay/pystatsml: Statistics and Machine Learning in Python
[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to content

Statistics and Machine Learning in Python

License

Unknown, BSD-3-Clause licenses found

Licenses found

Unknown
LICENSE
BSD-3-Clause
COPYING
Notifications You must be signed in to change notification settings

duchesnay/pystatsml

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Statistics and Machine Learning in Python

Structure

The Course is a Sphinx project made of :

  1. Jupyter notebooks */*.ipynb files.

  2. Python files using sphinx-gallery */*.py files.

  3. ReStructuredText or Markdown files.

All notebooks and python files are converted into rst format and then assembled together using sphinx.

Directories and main files: introduction/ └── introduction_python_for_datascience.rst

python_lang/
├── python_lang.py
└── python_lang_solutions.py

data_manipulation/
├── data_numpy.py
├── data_numpy_solutions.py
├── data_pandas.py
├── data_pandas_solutions.py
└── data_visualization.ipynb

numerical_methods/
├── optim_gradient_descent.ipynb
├── numerical_differentiation_integration.ipynb
├── symbolic_maths.ipynb
├── symbolic_maths.rst
├── time_series.ipynb
└── time_series.rst

statistics/
├── stat_univ.ipynb
├── stat_univ_solutions.ipynb
├── stat_multiv.ipynb
├── stat_multiv_solutions.py
├── lmm
│   └── lmm.ipynb
└── stat_montecarlo.ipynb

ml_unsupervised/
├── clustering.ipynb
├── introduction_to_ml.rst
├── linear_dimensionality_reduction.ipynb
├── linear_dimensionality_reduction_solutions.ipynb
├── manifold_learning.ipynb
└── manifold_learning_solutions.ipynb

ml_supervised/
├── overfitting.ipynb
├── ensemble_learning.py
├── kernel_svm.py
├── linear_classification.ipynb
└── linear_regression.ipynb

deep_learning/
├── dl_backprop_numpy-pytorch-sklearn.ipynb
├── dl_mlp_pytorch.ipynb
├── dl_cnn_cifar10_pytorch.ipynb
└── dl_cnn-pretraining_pytorch.rst

Installation for students

Clone the repository


```
git clone https://github.com/duchesnay/pystatsml.git
cd pystatsml
```

Using Anaconda
~~~~~~~~~~~~~~

Install [Anaconda](https://www.anaconda.com) with python >= 3.

Standard user (student) should install the required data analysis packages.
Create and activate the `pystatsml_student` environment:

```
conda env create -f environment_student.yml
conda activate pystatsml_student
```

Usinf Pixi
~~~~~~~~~~

Install [Pixi](https://pixi.sh/latest/)

Linux & macOS

```
curl -fsSL https://pixi.sh/install.sh | bash
```

Windows

```
iwr -useb https://pixi.sh/install.ps1 | iex
```


Install dependencies contained in pixi.toml file (within the project directory)

```
pixi install
```

Activate an environment (within the project directory)

```
pixi shell
```

What’s in the environment?

```
pixi list
```

Deactivating an environment

```
exit
```


Installation for teachers: to build the documents
-------------------------------------------------

Expert users (teachers) who need to build (pdf, html, etc.) the course should install additional packages including:

- p
5DDA
andoc
- [sphinx-gallery](https://sphinx-gallery.readthedocs.io)
- [nbstripout](https://github.com/kynan/nbstripout)

Create and activate the ``pystatsml_teacher`` environment:

```
conda env create -f environment_teacher.yml
conda activate pystatsml_teacher
```

Build the documents.
Configure your git repository with `nbstripout`: a pre-commit hook for users who don't want to track notebooks' outputs in git.

```
nbstripout --install
```

Optional: install LaTeX to generate pdf. For Linux debian like:

```
sudo apt-get install latexmk texlive-latex-extra
```


After pulling the repository execute Jupyter notebooks (outputs are expected to be removed before git submission):

```
make exe
```

Build the pdf file (requires LaTeX):

```
make pdf
```

Build the html files:

```
make html
```

Clean everything:

```
make clean
```

Optional to generate  Microsoft docx. Use [docxbuilder](https://docxbuilder.readthedocs.io/en/latest/docxbuilder.html):

```
make docx
```

Contributing
------------

Cross-references
~~~~~~~~~~~~~~~~

Add the `ref:` prefix to your references.

Defining references label:

- Markdown file (add `#` before the label)

```
### Demonstration of Negative Log-Likelihood (NLL) {#ref:demonstration-nll}
```

Cross-referencing:

- Jupyter Notebook

```
[Demonstration of Negative Log-Likelihood (NLL)](ref:demonstration-nll)
```

About

Statistics and Machine Learning in Python

Resources

License

Unknown, BSD-3-Clause licenses found

Licenses found

Unknown
LICENSE
BSD-3-Clause
COPYING

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Jupyter Notebook 65.7%
  • Python 32.7%
  • Other 1.6%
0