8000 GitHub - dajuguan/ContinualGP: Continual Gaussian Processes
[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to content

dajuguan/ContinualGP

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

21 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Install

require python=2.7
conda create -n py27 python=2.7
conda activate py27
pip install -r requirement.txt

python experiments/single_output.py

Run

cd experiment
python xxx.py

Continual Gaussian Processes

This repository contains the implementation of our Continual (Multi-task) Gaussian Process model. We provide a detailed code for single-output GP regression, multi-output GP regression, GP classification and long-term continual learning.

Please, if you use this code, cite the following preprint:

@article{MorenoArtesAlvarez19,
  title = {Continual Multi-task Gaussian Processes},
  author = {Moreno-Mu\~noz, Pablo and Art\'es-Rodr\'iguez, Antonio and \'Alvarez, Mauricio A},
  journal = {arXiv preprint arXiv:1911.00002},
  year = {2019}
}

Solar sunspots data.

solar1000

Results: In the /experiments/ folder you may find the following scripts for simulations.

single_output.py // Continual GP regression
multi_output.py  // Continual multi-output GP regression
banana.py        // Continual GP classification
solar.py         // Long-term continual GP regression (figure above).

The Python syntaxes of likelihood distributions and the structure of our code is based on the HetMOGP repository.

Contributors

Pablo Moreno-Muñoz, Antonio Artés-Rodríguez and Mauricio A. Álvarez

For further information or contact:

pmoreno@tsc.uc3m.es

About

Continual Gaussian Processes

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%
0