refined is a Scala library for refining types with type-level predicates which constrain the set of values described by the refined type. It started as a port of the refined Haskell library (which also provides an excellent motivation why this kind of library is useful).
A quick example:
import eu.timepit.refined._
import eu.timepit.refined.auto._
import eu.timepit.refined.numeric._
import shapeless.tag.@@
// This refines Int with the Positive predicate and checks via an
// implicit macro that the assigned value satisfies it:
val i1: Int @@ Positive = 5
i1: Int @@ Positive = 5
// If the value does not satisfy the predicate, we get a meaningful
// compile error:
val i2: Int @@ Positive = -5
<console>:21: error: Predicate failed: (-5 > 0).
val i2: Int @@ Positive = -5
^
// There is also the explicit refineMT macro that can infer the base
// type from its parameter:
scala> refineMT[Positive](5)
res0: Int @@ Positive = 5
// Macros can only validate literals because their values are known at
// compile-time. To validate arbitrary (runtime) values we can use the
// refineT function:
scala> refineT[Positive](5)
res1: Either[String, Int @@ Positive] = Right(5)
scala> refineT[Positive](-5)
res2: Either[String, Int @@ Positive] = Left(Predicate failed: (-5 > 0).)
@@
is shapeless' type for tagging types which has the nice
property of being a subtype of its first type parameter (i.e. (T @@ P) <: T
).
refined also contains inference rules for converting between different
refined types. For example, Int @@ Greater[_10]
can be safely converted
to Int @@ Positive
because all integers greater than ten are also positive.
The type conversion of refined types is a compile-time operation that is
provided by the library:
import shapeless.nat._
scala> val a: Int @@ Greater[_5] = 10
a: Int @@ Greater[_5] = 10
// Since every value greater than 5 is also greater than 4, a can be ascribed
// the type Int @@ Greater[_4]:
scala> val b: Int @@ Greater[_4] = a
b: Int @@ Greater[_4] = 10
// An unsound ascription leads to a compile error:
scala> val c: Int @@ Greater[_6] = a
<console>:34: error: type mismatch (invalid inference):
Greater[_5] does not imply
Greater[_6]
val b: Int @@ Greater[_6] = a
^
This mechanism allows to pass values of more specific types (e.g. Int @@ Greater[_10]
)
to functions that take a more general type (e.g. Int @@ Positive
) without manual
intervention.
- More examples
- Using refined
- Documentation
- Provided predicates
- Contributors and participation
- Projects using refined
- Performance concerns
- Related projects
- License
import shapeless.{ ::, HNil }
import eu.timepit.refined.boolean._
import eu.timepit.refined.char._
import eu.timepit.refined.collection._
import eu.timepit.refined.generic._
import eu.timepit.refined.string._
scala> refineMT[NonEmpty]("Hello")
res2: String @@ NonEmpty = Hello
scala> refineMT[NonEmpty]("")
<console>:27: error: Predicate isEmpty() did not fail.
refineMT[NonEmpty]("")
^
scala> type ZeroToOne = Not[Less[_0]] And Not[Greater[_1]]
defined type alias ZeroToOne
scala> refineMT[ZeroToOne](1.8)
<console>:27: error: Right predicate of (!(1.8 < 0) && !(1.8 > 1)) failed: Predicate (1.8 > 1) did not fail.
refineMT[ZeroToOne](1.8)
^
scala> refineMT[AnyOf[Digit :: Letter :: Whitespace :: HNil]]('F')
res3: Char @@ AnyOf[Digit :: Letter :: Whitespace :: HNil] = F
scala> refineMT[MatchesRegex[W.`"[0-9]+"`.T]]("123.")
<console>:34: error: Predicate failed: "123.".matches("[0-9]+").
refineMT[MatchesRegex[W.`"[0-9]+"`.T]]("123.")
^
scala> val d1: Char @@ Equal[W.`'3'`.T] = '3'
d1: Char @@ Equal[Char('3')] = 3
scala> val d2: Char @@ Digit = d1
d2: Char @@ Digit = 3
scala> val d3: Char @@ Letter = d1
<console>:34: error: type mismatch (invalid inference):
Equal[Char('3')] does not imply
Letter
val d3: Char @@ Letter = d1
^
scala> val r1: String @@ Regex = "(a|b)"
r1: String @@ Regex = (a|b)
scala> val r2: String @@ Regex = "(a|b"
<console>:40: error: Regex predicate failed: Unclosed group near index 4
(a|b
^
val r2: String @@ Regex = "(a|b"
^
scala> val u1: String @@ Url = "htp://example.com"
<console>:40: error: Url predicate failed: unknown protocol: htp
val u1: String @@ Url = "htp://example.com"
^
Note that W
is a shortcut for shapeless.Witness
which provides
syntax for literal-based singleton types.
The latest version of the library is 0.3.6, which is available for Scala and Scala.js version 2.10 and 2.11.
If you're using sbt, add the following to your build:
libraryDependencies ++= Seq(
"eu.timepit" %% "refined" % "0.3.6",
"eu.timepit" %% "refined-scalaz" % "0.3.6", // optional, JVM only
"eu.timepit" %% "refined-scodec" % "0.3.6", // optional
"eu.timepit" %% "refined-scalacheck" % "0.3.6" % "test" // optional
)
For Scala.js just replace %%
with %%%
above.
Instructions for Maven and other build tools are available at search.maven.org.
Release notes for the latest version are available in 0.3.6.markdown.
The optional dependencies are add-on libraries that provide support for other tag types or integration of refined types in other libraries:
refined-scalaz
for support of Scalaz' tag type (scalaz.@@
)refined-scodec
for integration with scodecrefined-scalacheck
for ScalaCheck type class instances of refined types
See also the list of projects that use refined for libraries that directly provide support for refined.
Documentation
948BAPI documentation of the latest release is available at: http://fthomas.github.io/refined/latest/api/
There are further (type-checked) examples in the docs
directory including ones for defining custom predicates
and working with type aliases. It also contains a
description of refined's design and internals.
The library comes with these predefined predicates:
True
: constant predicate that is alwaystrue
False
: constant predicate that is alwaysfalse
Not[P]
: negation of the predicateP
And[A, B]
: conjunction of the predicatesA
andB
Or[A, B]
: disjunction of the predicatesA
andB
Xor[A, B]
: exclusive disjunction of the predicatesA
andB
AllOf[PS]
: conjunction of all predicates inPS
AnyOf[PS]
: disjunction of all predicates inPS
OneOf[PS]
: exclusive disjunction of all predicates inPS
Digit
: checks if aChar
is a digitLetter
: checks if aChar
is a letterLetterOrDigit
: checks if aChar
is a letter or digitLowerCase
: checks if aChar
is a lower case characterUpperCase
: checks if aChar
is an upper case characterWhitespace
: checks if aChar
is white space
Contains[U]
: checks if aTraversableOnce
contains a value equal toU
Count[PA, PC]
: counts the number of elements in aTraversableOnce
which satisfy the predicatePA
and passes the result to the predicatePC
Empty
: checks if aTraversableOnce
is emptyNonEmpty
: checks if aTraversableOnce
is not emptyForall[P]
: checks if the predicateP
holds for all elements of aTraversableOnce
Exists[P]
: checks if the predicateP
holds for some elements of aTraversableOnce
Head[P]
: checks if the predicateP
holds for the first element of aTraversable
Index[N, P]
: checks if the predicateP
holds for the element at indexN
of a sequenceLast[P]
: checks if the predicateP
holds for the last element of aTraversable
Size[P]
: checks if the size of aTraversableOnce
satisfies the predicateP
MinSize[N]
: checks if the size of aTraversableOnce
is greater than or equal toN
MaxSize[N]
: checks if the size of aTraversableOnce
is less than or equal toN
Equal[U]
: checks if a value is equal toU
Eval[S]
: checks if a value applied to the predicateS
yieldstrue
ConstructorNames[P]
: checks if the constructor names of a sum type satisfyP
FieldNames[P]
: checks if the field names of a product type satisfyP
Subtype[U]
: witnesses that the type of a value is a subtype ofU
Supertype[U]
: witnesses that the type of a value is a supertype ofU
Less[N]
: checks if a numeric value is less thanN
LessEqual[N]
: checks if a numeric value is less than or equal toN
Greater[N]
: checks if a numeric value is greater thanN
GreaterEqual[N]
: checks if a numeric value is greater than or equal toN
Positive
: checks if a numeric value is greater than zeroNonPositive
: checks if a numeric value is zero or negativeNegative
: checks if a numeric value is less than zeroNonNegative
: checks if a numeric value is zero or positiveInterval.Open[L, H]
: checks if a numeric value is in the interval (L
,H
)Interval.OpenClosed[L, H]
: checks if a numeric value is in the interval (L
,H
]Interval.ClosedOpen[L, H]
: checks if a numeric value is in the interval [L
,H
)Interval.Closed[L, H]
: checks if a numeric value is in the interval [L
,H
]
EndsWith[S]
: checks if aString
ends with the suffixS
MatchesRegex[S]
: checks if aString
matches the regular expressionS
Regex
: checks if aString
is a valid regular expressionStartsWith[S]
: checks if aString
starts with the prefixS
Uri
: checks if aString
is a valid URIUrl
: checks if aString
is a valid URLUuid
: checks if aString
is a valid UUIDXml
: checks if aString
is valid XMLXPath
: checks if aString
is a valid XPath expression
- Alexandre Archambault (@alxarchambault)
- Frank S. Thomas (@fst9000)
- Jean-Rémi Desjardins (@jrdesjardins)
- Vladimir Koshelev (@vlad_koshelev)
- Your name here :-)
refined is a Typelevel project. This means we embrace pure, typeful, functional programming, and provide a safe and friendly environment for teaching, learning, and contributing as described in the Typelevel code of conduct.
If you have a project that uses the library to enforce more static guarantees and you'd like to include in this list, please open a pull request or mention it in the Gitter channel and we'll add a link to it here.
- argonaut-shapeless - provides the argonaut-refined subproject for (de)serialization of refined types from and to JSON
- circe - provides the circe-refined subproject for (de)serialization of refined types from and to JSON
- Monocle - provides the monocle-refined subproject which contains lenses for safe bit indexing into primitive types
- Quasar - is an open source NoSQL analytics engine which uses refined for natural and positive integer types
- Your project here :-)
Using refined's macros for compile-time refinement bears zero runtime overhead for reference types and only causes boxing for value types. PostErasureAnyRef and PostErasureAnyVal show the differences of unrefined and refined types during the posterasure compiler phase.
- bond: Type-level validation for Scala
- F7: Refinement Types for F#
- LiquidHaskell: Refinement Types via SMT and Predicate Abstraction
- refined: Refinement types with static and runtime checking for Haskell. refined was inspired this library and even stole its name!
refined is licensed under the MIT license, available at http://opensource.org/licenses/MIT and also in the LICENSE file.