8000 GitHub - dankhap/ORB_SLAM2
[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to content

dankhap/ORB_SLAM2

 
 

Repository files navigation

ORB-SLAM2 with SAVE MAP + LOAD MAP functionality

Supports Tello Dji SDK & ROS

Forked from: https://github.com/raulmur/ORB_SLAM2

ORB-SLAM2 with SAVE MAP + LOAD MAP functionality Supports Tello Dji SDK & ROS

ORB-SLAM2 is a real-time SLAM library for Monocular, Stereo and RGB-D cameras that computes the camera trajectory and a sparse 3D reconstruction (in the stereo and RGB-D case with true scale). It is able to detect loops and relocalize the camera in real time. We provide examples to run the SLAM system in the KITTI dataset as stereo or monocular, and in the TUM dataset as RGB-D or monocular. We also provide a ROS node to process live monocular or RGB-D streams. The library can be compiled without ROS. ORB-SLAM2 provides a GUI to change between a SLAM Mode and Localization Mode, see section 9 of this document.

#####Videos showing ORB-SLAM2: Tsukuba Dataset

###Related Publications:

#1. License

ORB-SLAM2 is released under a GPLv3 license. For a list of all code/library dependencies (and associated licenses), please see Dependencies.md.

For a closed-source version of ORB-SLAM2 for commercial purposes, please contact the authors: orbslam (at) unizar (dot) es.

If you use ORB-SLAM2 in an academic work, please cite:

@article{murTRO2015,
  title={{ORB-SLAM}: a Versatile and Accurate Monocular {SLAM} System},
  author={Mur-Artal, Ra\'ul, Montiel, J. M. M. and Tard\'os, Juan D.},
  journal={IEEE Transactions on Robotics},
  volume={31},
  number={5},
  pages={1147--1163},
  doi = {10.1109/TRO.2015.2463671},
  year={2015}
 }

#2. Prerequisites

Ubuntu 18.04

C++11 or C++0x Compiler

We use the new thread and chrono functionalities of C++11.

Pangolin

mkdir ORB_SLAM2
cd ORB_SLAM2

install Pangoline

We use Pangolin for visualization and user interface. Dowload and install instructions can be found at: https://github.com/stevenlovegrove/Pangolin.

OpenCV

We use OpenCV to manipulate images and features. Dowload and install instructions can be found at: http://opencv.org. Required at leat 2.4.3. Tested with OpenCV 2.4.11.

Eigen3

Required by g2o (see below). Download and install: Required at least 3.1.0.

sudo apt-get install libeigen3-dev

BLAS and LAPACK

BLAS and LAPACK libraries are requi 8000 ered by g2o (see below). On ubuntu:

sudo apt-get install libblas-dev
sudo apt-get install liblapack-dev
sudo apt-get install libboost-all-dev

DBoW2 and g2o (Included in Thirdparty folder)

We use modified versions of the DBoW2 library to perform place recognition and g2o library to perform non-linear optimizations. Both modified libraries (which are BSD) are included in the Thirdparty folder.

ROS

We provide some examples to process the live input of a monocular or RGB-D camera using ROS. Building these examples is optional. In case you want to use ROS, a version Hydro or newer is needed.

#3. Building ORB-SLAM2 library and TUM/KITTI examples

Clone the repository:

git clone https://github.com/faresfaresCS/ORB_SLAM2.git ORB_SLAM2

We provide a script build.sh to build the Thirdparty libraries and ORB-SLAM2. Please make sure you have installed all required dependencies (see section 2). Execute:

cd ORB_SLAM2
chmod +x build.sh
./build.sh

This will create libORB_SLAM.so at lib folder and the executables mono_tum, mono_kitti, rgbd_tum, stereo_kitti in Examples folder.

ROS Examples

Building the nodes for mono, stereo and RGB-D

  1. Add the path including Examples/ROS/ORB_SLAM2 to the ROS_PACKAGE_PATH environment variable. Open .bashrc file and add at the end the following line. Replace PATH by the folder where you cloned ORB_SLAM2:
export ROS_PACKAGE_PATH=${ROS_PACKAGE_PATH}:PATH/ORB_SLAM2/Examples/ROS/ORB_SLAM2
  1. Go to Examples/ROS/ORB_SLAM2 folder and execute:
mkdir build
cd build
cmake .. -DROS_BUILD_TYPE=Release
make -j

Running Monocular Node

For a monocular input from topic /camera/image_raw run node ORB_SLAM2/Mono. You will need to provide the vocabulary file and a settings file. See the monocular examples above.

rosrun ORB_SLAM2 Mono PATH_TO_VOCABULARY PATH_TO_SETTINGS_FILE

##. Processing your own sequences You will need to create a settings file with the calibration of your camera. See the settings file provided for the TUM and KITTI datasets for monocular, stereo and RGB-D cameras. We use the calibration model of OpenCV. See the examples to learn how to create a program that makes use of the ORB-SLAM2 library and how to pass images to the SLAM system. Stereo input must be synchronized and rectified. RGB-D input must be synchronized and depth registered.

SLAM and Localization Modes

You can change between the SLAM and Localization mode using the GUI of the map viewer.

SLAM Mode

This is the default mode. The system runs in parallal three threads: Tracking, Local Mapping and Loop Closing. The system localizes the camera, builds new map and tries to close loops.

Localization Mode

This mode can be used when you have a good map of your working area. In this mode the Local Mapping and Loop Closing are deactivated. The system localizes the camera in the map (which is no longer updated), using relocalization if needed.

Running Tello room exit scenario

  1. Place the Tello drone in the center of the room with an open door that will be detected as the exit
  2. Pair the drone with the computer running the application
  3. Run the executable Examples\Monocular\mono_tello Vocabulary\ORBvoc.bin cheetu2.yaml

About

No description, website, or topics provided.

Resources

License

Unknown, GPL-3.0 licenses found

Licenses found

Unknown
LICENSE.txt
GPL-3.0
License-gpl.txt

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • C++ 99.2%
  • Other 0.8%
0