10000 GitHub - deconasser/Reperio-rPPG
[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to content

deconasser/Reperio-rPPG

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

1 Commit
 
 
 
 

Repository files navigation

Reperio-rPPG: Reperio-rPPG: Relational Temporal Graph Neural Networks for Periodicity Learning in Remote Physiological Measurement

This repository is the official implementation of the paper [Reperio-rPPG: Relational Temporal Graph Neural Networks for Periodicity Learning in Remote Physiological Measurement].

Dependencies

conda create -n rppg python=3.9
conda activate rppg
pip install -r requirements.txt
gdown https://drive.google.com/uc?id=1TqE3a7VAVLj0d31YKII_PSerdt2aixBP torch-2.0.0+cu118-cp39-cp39-linux_x86_64
gdown https://drive.google.com/uc?id=1S6rjIxDfawnHROX6EBVD4vLIloMVD2Fc torchvision-0.15.1+cu118-cp39-cp39-linux_x86_64

pip install path/to/torch-2.0.0+cu118-cp39-cp39-linux_x86_64
pip install path/to/torchvision-0.15.1+cu118-cp39-cp39-linux_x86_64

Train & Validation

  1. Replace Path/to/XXXX/dataset and Path/to/cache/directory with the correct directories in preprocess.py
  2. Execute the script by running: python preprocess.py
  3. Update the configuration files in ./configs/ by setting Path/to/XXXX/dataset and Path/to/cache/directory to the appropriate paths.
  4. Start training by executing: python ./train.py --config ./configs/lsts_xxxx.yaml --split_idx idx where xxxx refers to the dataset name and idx is the data split index (from 0 to 4).
  5. Training progress and results are tracked via Weights & Biases. Visit the platform to monitor your experiments.

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

0