TensorFlow Recommenders is a library for building recommender system models using TensorFlow.
It helps with the full workflow of building a recommender system, from data preparation, model formulation, training, evaluation, to deployment.
It's built on Keras and aims to have a gentle learning curve while still giving you the flexibility to build complex models.
Install from pip
:
pip install tensorflow-recommenders
Building a factorization model for the Movielens 100K dataset is very simple (Colab):
import tfrs
# Get the data.
ratings, movies = tfrs.datasets.movielens_100K()
# Build a model.
class Model(tfrs.Model):
def __init__(self):
super().__init__()
# Set up user representation.
self.user_model = tf.keras.layers.Embedding(
input_dim=2000, output_dim=64)
# Set up movie representation.
self.item_model = tf.keras.layers.Embedding(
input_dim=2000, output_dim=64)
# Set up a retrieval task and evaluation metrics over the
# entire dataset of candidates.
self.task = tfrs.tasks.RetrievalTask(
corpus_metrics=tfrs.metrics.FactorizedTopK(
candidates=movies.batch(128).map(lambda x: self.item_model(x["movie_id"]))
)
)
def train_loss(self, features: Dict[Text, tf.Tensor]) -> tf.Tensor:
user_embeddings = self.user_model(features["user_id"])
movie_embeddings = self.item_model(features["movie_id"])
return self.task(user_embeddings, movie_embeddings)
model = Model()
model.compile(optimizer=tf.keras.optimizers.Adagrad(0.5))
# Randomly shuffle data and split between train and test.
tf.random.set_seed(42)
shuffled = ratings.shuffle(100_000, seed=42, reshuffle_each_iteration=False)
train = shuffled.take(80_000)
test = shuffled.skip(80_000).take(20_000)
# Train.
model.fit(train.batch(4096), epochs=5)
# Evaluate.
model.evaluate(test.batch(4096), return_dict=True)