8000 GitHub - eliliu2233/occ-flow: [CoRL2024] Let Occ Flow: Self-Supervised 3D Occupancy Flow Prediction
[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to content

eliliu2233/occ-flow

Repository files navigation

Let Occ Flow: Self-Supervised 3D Occupancy Flow Prediction

Let Occ Flow: Self-Supervised 3D Occupancy Flow Prediction, CoRL 2024

Yili Liu*, Linzhan Mou*, Xuan Yu, Chenrui Han, Sitong Mao, Rong Xiong, Yue Wang$\dagger$

* Equal contribution $\dagger$ Corresponding author

Update

  • [2025/04/16] - Code and checkpoints released.
  • [2024/09/04] - Our paper has been accepted by CoRL 2024.
  • [2024/07/18] - We released our paper on arXiv.

Overview

Results on KITTI-MOT dataset:

demo

Results on nuScenes dataset:

demo

Pipeline for 3D occupancy flow prediction:

intro

Getting Started

Installation

Follow detailed instructions in Installation.

Preparing Dataset

Follow detailed instructions in Prepare Dataset.

Train

# Stage 1: train occ model
## for kitti odometry dataset (tab.1)
python train.py --py-config config/kitti/kitti_occ_odom.py --work-dir out/train/kitti/occ_odom --dataset kitti --depth-metric 
## for nuscenes dataset (tab.3)
python train.py --py-config config/nuscenes/nuscenes_occ_voxelaffm.py --work-dir out/train/nuscenes/occ_static_train --dataset nuscenes --depth-metric

# Stage 2: train occ flow model (modify the parameter 'load_from' in the config file)
python train.py --py-config config/nuscenes/nuscenes_occ_flow_voxelaffm.py --work-dir out/train/nuscenes/occ_flow_train --dataset nuscenes --depth-metric 

Evaluation and Visualization

Reproduce our results by downloading the checkpoints run by us from here.

# save occupancy, occupancy flow and render results
# (modify the parameter 'load_from' in the config file)
## for kitti dataset
python eval.py --py-config config/kitti/kitti_occ_odom.py --work-dir out/visualization/kitti/kitti_odom --resolution 0.2 --dataset kitti
## for nuscenes dataset
python eval.py --py-config config/nuscenes/nuscenes_occ_flow_voxelaffm.py --work-dir out/visualization/nuscenes/occ_flow --resolution 0.4 --dataset nuscenes

# prepare ray casting for ray_iou_geo metric
## for kitti dataset
python utils/ray_iou_geo/ray_casting_kitti.py --pred-occ-path out/visualization/nuscenes/kitti/kitti_odom --output-dir /path/to/project/ray_iou_output/kitti_odom
## for nuscenes dataset
python utils/ray_iou_geo/ray_casting_nus.py --pred-occ-path out/visualization/nuscenes/occ_flow/occupancy --output-dir /path/to/project/ray_iou_output/occ_flow

# eval ray_iou_geo metric
## for kitti dataset
python utils/ray_iou_geo/metric_kitti.py --work-dir /path/to/project/ray_iou_output/kitti_odom
## for nuscenes dataset
python utils/ray_iou_geo/metric.py --work-dir /path/to/project/ray_iou_output/occ_flow

# visualize occupancy and occupancy flow
python visualize_occupancy.py

Acknowledgement

Many thanks to these excellent projects.

Citation

If this work is helpful for your research, please consider citing the following paper:

@article{liu2024letoccflow,
    title={Let Occ Flow: Self-Supervised 3D Occupancy Flow Prediction},
    author={Yili Liu and Linzhan Mou and Xuan Yu and Chenrui Han and Sitong Mao and Rong Xiong and Yue Wang},
    journal={arXiv preprint arXiv:2407.07587},
    year={2024},
}

About

[CoRL2024] Let Occ Flow: Self-Supervised 3D Occupancy Flow Prediction

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

0