8000 GitHub - erichson/ShallowDecoder: Shallow Learning for Flow Reconstruction with Limited Sensors and Limited Data
[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to content

erichson/ShallowDecoder

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

7 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Shallow Decoder for flow reconstruction with limited sensors and limited data

Flow reconstruction is an important problem across the physical, biological, and engineering sciences. Given some sensor sensor measurements (e.g., orange points in the image below) the aim is it to reconstruct the corresponding high-dimensional flow field.

Traditionally, modal approximation techniques, such as the proper orthogonal decomposition (POD), are used for this task. Here, we propose a neural network-based methodology. 687E Indeed, the reconstruction quality of the shallow decoder outperforms traditional methods. For instance, the following image shows the reconstructed flow field using only 5 sensors:

For comparison, the reconstructed flow field using the traditional POD technique:

Example

Start by cloning the git repository:

git clone https://github.com/erichson/ShallowDecoder

Then, you can run a simple examples as follows (without plotting the results):

python flow_driver.py --data flow_cylinder --sensor wall --n_sensors 5 --epochs 4000 

Or optional you can plot the results:

python flow_driver.py --data flow_cylinder --sensor wall --n_sensors 5 --epochs 4000 --plotting True  

Required packages

  • PyTorch
  • scikit-learn
  • For plotting you need in addition the cmocean package: pip install cmocean

References

Coming soon!

About

Shallow Learning for Flow Reconstruction with Limited Sensors and Limited Data

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

0