8000 GitHub - faaltunel/vibration_gan: Gan for time series vibration signals generation task
[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to content

faaltunel/vibration_gan

 
 

Repository files navigation

vibration_gan

Gan for time series vibration signals generation task, to enhance classification accuracy of fault diagnosis model by data augmentation

personal undergraduate thesis

dataset

CWRU bearning data download

environment setup

  • python 3.x
  • tensorflow 1.15
  • keras
  • sklearn
  • matplotlib
  • numpy

data generation

  • train gan with limited target signals:
$ python train_gan.py --phase='train' --GAN_type='WGAN-GP' --target='B007' --imbalance_ratio=50
  • generate target signals with pretrained gan:
$ python train_gan.py --phase='generate' --checkpoint_dir=which-pretrained-model-in-checkpoint-dir --target='B007' --imbalance_ratio=50

data evaluation

  • use mmd.py to compare the difference between real data and generated data
  • use tsne.py to get visualization result
  • use fault_diagnosis.py to train diagnosis model with balanced dataset (generated by oversampling method - 'GAN', 'SMOTE', 'ADASYN','RANDOM')
$ python fault_diagnosis.py --imbalance_ratio=50 --oversampling_method='GAN' --generated_data_dir='\generated_data\ORDER_minmax_ratio50'
  • compare GAN with other oversampling method
$ python fault_diagnosis.py --imbalance_ratio=50 --oversampling_method='ADASYN' 
  • just train diagnosis model with balanced real dataset
$ python fault_diagnosis.py --imbalance_ratio=1 --oversampling_method='none' 

reference

DCGAN_WGAN_WGAN-GP_LSGAN_SNGAN_RSGAN_BEGAN_ACGAN_PGGAN_TensorFlow

Keras_bearing_fault_diagnosis

About

Gan for time series vibration signals generation task

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%
0