10000 GitHub - fotwo/sampleCNN-pytorch: Pytorch implementation of "Sample-level Deep Convolutional Neural Networks for Music Auto-tagging Using Raw Waveforms"
[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to content

Pytorch implementation of "Sample-level Deep Convolutional Neural Networks for Music Auto-tagging Using Raw Waveforms"

Notifications You must be signed in to change notification settings

fotwo/sampleCNN-pytorch

 
 

Repository files navigation

Sample-level Deep CNN

Pytorch implementation of Sample-level Deep Convolutional Neural Networks for Music Auto-tagging Using Raw Waveforms

Data

MagnaTagATune Dataset

  • Used tag annotations and audio data

Model

3^9 model with input sample size 59049
3 : stride length of the first conv layer (along with filter size 3, it reduces input dimension to 19683)
9 : 9 hidden conv layers

Procedures

  • Data processing
    • audio (to read audio signal from mp3s and save as npy) : python process_audio.py
    • annotation (process redundant tags and select top N=50 tags): python process_annotations.py
      • this will create and save train/valid/test annotation files
  • Training
    • python main.py --device_num 0
  • Testing
    • predict tags for given songs
    • python evaluate.py --device_num 0

Tag prediction

  • python eval_tags.py --device_num 0 --mp3_file "path/to/mp3file/to/predict.mp3"

References

About

Pytorch implementation of "Sample-level Deep Convolutional Neural Networks for Music Auto-tagging Using Raw Waveforms"

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%
0