8000 GitHub - ginnux/unimatch: [TPAMI'23] Unifying Flow, Stereo and Depth Estimation
[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to content

ginnux/unimatch

 
 

Repository files navigation

基于CrowdFlow数据集上的GMFlow+模型测试

716C

本项目基于Unifying Flow, Stereo and Depth Estimation项目代码开发,加入了CrowdFlow数据集并进行测试。

环境配置

使用conda:

conda env create -f conda_environment.yml
conda activate unimatch

使用pip:

pip install torch==1.9.0+cu102 torchvision==0.10.0+cu102 torchaudio==0.9.0 -f https://download.pytorch.org/whl/torch_stable.html
pip install imageio==2.9.0 imageio-ffmpeg matplotlib opencv-python pillow scikit-image scipy tensorboard==2.9.1 setuptools==59.5.0

数据集

请将CrowdFlow数据集放在GMFlow+目录下的datasets文件夹,或者在--tub_root参数中传入自定义的文件夹。

运行用例

python main_flow.py --eval --resume pretrained/gmflow-scale1-things-e9887eda.pth --val_dataset tub --with_speed_metric --tub_root datasets/TUBCrowdFlow --tub_IM 1

测试结果

序列 EPE AE IE
IM01 0.53554 0.23989 32.97178
IM01_hDyn 0.36959 0.2218 27.59227
IM02 0.43167 0.25416 32.64068
IM02_hDyn 0.30441 0.19083 23.70604
IM03 1.78008 0.69063 48.85698
IM03_hDyn 4.02510 1.23368 41.97871
IM04 3.76057 1.20666 41.45065
IM04_hDyn 4.09951 1.23033 47.98547
IM05 4.06573 1.26431 36.34635
IM05_hDyn 6.64464 1.23461 54.78697

About

[TPAMI'23] Unifying Flow, Stereo and Depth Estimation

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 98.0%
  • Shell 2.0%
0