本项目基于Unifying Flow, Stereo and Depth Estimation项目代码开发,加入了CrowdFlow数据集并进行测试。
使用conda:
conda env create -f conda_environment.yml
conda activate unimatch
使用pip:
pip install torch==1.9.0+cu102 torchvision==0.10.0+cu102 torchaudio==0.9.0 -f https://download.pytorch.org/whl/torch_stable.html
pip install imageio==2.9.0 imageio-ffmpeg matplotlib opencv-python pillow scikit-image scipy tensorboard==2.9.1 setuptools==59.5.0
请将CrowdFlow数据集放在GMFlow+目录下的datasets文件夹,或者在--tub_root
参数中传入自定义的文件夹。
python main_flow.py --eval --resume pretrained/gmflow-scale1-things-e9887eda.pth --val_dataset tub --with_speed_metric --tub_root datasets/TUBCrowdFlow --tub_IM 1
序列 | EPE | AE | IE |
---|---|---|---|
IM01 | 0.53554 | 0.23989 | 32.97178 |
IM01_hDyn | 0.36959 | 0.2218 | 27.59227 |
IM02 | 0.43167 | 0.25416 | 32.64068 |
IM02_hDyn | 0.30441 | 0.19083 | 23.70604 |
IM03 | 1.78008 | 0.69063 | 48.85698 |
IM03_hDyn | 4.02510 | 1.23368 | 41.97871 |
IM04 | 3.76057 | 1.20666 | 41.45065 |
IM04_hDyn | 4.09951 | 1.23033 | 47.98547 |
IM05 | 4.06573 | 1.26431 | 36.34635 |
IM05_hDyn | 6.64464 | 1.23461 | 54.78697 |