8000 GitHub - gorguluberk/Rand-TS: A unified, fexible and interpretable representation learning framework for univariate and multivariate time-series (MTS).
[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to content

A unified, fexible and interpretable representation learning framework for univariate and multivariate time-series (MTS).

Notifications You must be signed in to change notification settings

gorguluberk/Rand-TS

Repository files navigation

Rand-TS: Randomized Trees for Time Series Representation Learning

A unified, fexible and interpretable representation learning framework for univariate and multivariate time-series (MTS)

Quickstart

import numpy as np
import pandas as pd
from os import listdir
from RandTS import *

directory = r'Dataset_Univariate\\'
datasets = listdir(directory)

train,test,labels_train,labels_test,X_train,X_test = load_data_new(directory, datasets[0])

classifier = RandTS()
classifier.fit(X_train,labels_train)
y_pred = classifier.predict(X_test,labels_test)
classifier.test_accuracy
>>> 0.7714285714285715

Documentation

Univariate

RandTS(method = 'l',depth = 5, ntree=10, var=10, featureSelection = None)

RandTS object with specified paramters:

  • method = {'l','d','b'} : 'l' for 'level', 'd' for 'difference', 'b' for both
  • depth (int) : Tree depth
  • ntree (int) : Number of randomized trees
  • featureSelection: {None, 'supervised', 'unsupervised'}
  • var (int) : Works with unsupervised feature selection. Sepcifies variance threshold for elimination
RandTS.fit(train, train_labels)

Trains the RandTS model on the given data. It does not directly use train_labels but it stores it in order to make prediction in the following steps.

RandTS.predict(test, test_labels)

Predicts the test lables based on the provided test data and returns the predictions.

RandTS.selectParameters(train, train_labels, param_kwargs={'depth_cv':[3,5,10], 'ntree_cv':[100], 'rep_num':1, 'method_cv':['l','d','b']})

Applies parameter selection in a given set of parameters and replication number.

  • param_kwargs (dict): parameter set that is considered in parameter selection.

    • 'depth_cv':[3,5,10]
    • 'ntree_cv':[100]
    • 'rep_num':1
    • 'method_cv':['l','d','b']

Multivariate

RandTSMultivariate(method = 'l',depth = 5, ntree=10, var=10, featureSelection = None)

RandTS object with specified paramters:

  • method = {'l','d','b'} : 'l' for 'level', 'd' for 'difference', 'b' for both
  • depth (int) : Tree depth
  • ntree (int) : Number of randomized trees
  • featureSelection: {None, 'supervised', 'unsupervised'}
  • var (int) : Works with unsupervised feature selection. Sepcifies variance threshold for elimination
RandTSMultivariate.fit(train, train_labels, ndims)

Trains the RandTS model on the given data. It does not directly use train_labels but it stores it in order to make prediction in the following steps.

  • ndims: Number of variables in the multivariate time series.
RandTSMultivariate.predict(test, test_labels)

Predicts the test lables based on the provided test data and returns the predictions.

RandTS.selectParameters(train, train_labels, param_kwargs={'depth_cv':[3,5,10], 'ntree_cv':[100], 'rep_num':1, 'method_cv':['l','d','b']})

Applies parameter selection in a given set of parameters and replication number.

  • param_kwargs (dict): parameter set that is considered in parameter selection.

    • 'depth_cv':[3,5,10]
    • 'ntree_cv':[100]
    • 'rep_num':1
    • 'method_cv':['l','d','b']

How to cite Rand-TS

If you use Rand-TS in a scientific publication, we would appreciate citations to the following paper:

Berk Gorgulu, Mustafa Gokce Baydogan (2021): “Randomized Trees for Time Series Representation and Similarity”

Bibtex entry:

@article{gorgulu2021randomized,
  title={Randomized Trees for Time Series Representation and Similarity},
  author={G{\"o}rg{\"u}l{\"u}, Berk and Baydo{\u{g}}an, Mustafa G{\"o}k{\c{c}}e},
  journal={Pattern Recognition},
  pages={108097},
  year={2021},
  publisher={Elsevier}
}

About

A unified, fexible and interpretable representation learning framework for univariate and multivariate time-series (MTS).

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published
0