8000 GitHub - gregorgorjanc/tslmm: Linear mixed models on ARGs
[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to content

gregorgorjanc/tslmm

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

tslmm

tslmm is a complex trait analysis toolkit based on the tskit succinct tree sequence ecosystem.

It fits the following linear mixed model:

$$\mathbf{y} = X\mathbf{b} + Z\mathbf{u} + \boldsymbol{\varepsilon}$$

  • $N$, $F$, and $E$ are the number of individuals, fixed effects, and edges (of the tree sequence).
  • $\mathbf{y} \in \mathbb{R}^N$, $X \in \mathbb{R}^{N \times F}$, and $Z \in \mathbb{R}^{N \times E}$ are the trait vector, fixed effects design matrix, and random effects design matrix.
  • $\mathbf{b} \in \mathbb{R}^F$ and $\mathbf{u} \in \mathbb{R}^E$ are fixed and random effects coefficients. $\mathbf{u} \sim \mathcal{N}\left(\mathbf{0}, Q_{\mathbf{u}}^{-1}\right)$ where $Q_{\mathbf{u}}$ is the precision matrix.
  • $\boldsymbol{\varepsilon}$ is the non-genetic error terms.

See this example for full use.

About

Linear mixed models on ARGs

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Jupyter Notebook 77.1%
  • Python 22.9%
0