8000 GitHub - jannymongkol/video-moment-retrieval
[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to content

jannymongkol/video-moment-retrieval

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

37 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

video-moment-retrieval

Setup Instructions

  1. Clone the repository:

    git clone https://github.com/jannymongkol/video-moment-retrieval.git
    cd video-moment-retrieval
  2. Create a virtual environment and activate it:

    • With venv:

      python3 -m venv venv
      source venv/bin/activate
    • With conda:

      conda create -n env_name
      conda activate env_name
      conda install pip
  3. Install the required dependencies:

    pip install -r requirements.txt
  4. Download the necessary data and place it in the appropriate directories:

    • Ensure the data is structured as described below.

Expected Data and Prediction Folder Structure

Both Data and Prediction Folders are git-ignored, but are required for running this project.

video-moment-retrieval/
└── data/
    ├── vu17_charades/
    ├── Charades-CD/
    ├── Charades_v1_480/
    ├── Charades_v1_480_16/
    ├── clip_text_feature_vector/
    └── clip_video_feature_vector/
└── predictions/
  • data/vu17_charades/:
  • data/Charades-CD/:
  • data/Charades_v1_480/:
  • data/Charades_v1_480_16/:
    • Contains the videos in Charades dataset, standardized to 16 fps
    • Run ./generate_16fps.sh, to generate this folder
  • data/clip_text_feature_vector/:
    • Clip embeddings for all text queries.
    • Use setup/generate_text_vectors.py to generate this (with all 4 data files in Charades-CD)
  • data/clip_video_feature_vector/:
    • Clip embeddings for each frame of each video.
    • Use setup/generate_video_vectors.py to generate this (with all 4 data files in Charades-CD)
  • predictions/:
    • Keep this folder in the root directly, for storing all prediction results. Used by evaluation methods.
    • To generate baseline predictions, run baseline/baseline_prediction.py

Make sure to follow this structure to ensure the code runs correctly.

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 2

  •  
  •  
0