8000 [WIP] Sharing work on FSDP2 x QLoRA profiling by janeyx99 · Pull Request #1 · janeyx99/torchtune · GitHub
[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to content

[WIP] Sharing work on FSDP2 x QLoRA profiling #1

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Open
wants to merge 55 commits into
base: main
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
Show all changes
55 commits
Select commit Hold shift + click to select a range
e5826a1
enable LoRA + FSDP2
weifengpy Apr 24, 2024
64fc870
reset params for lora weights and rope
weifengpy Apr 24, 2024
0cd21c6
support lora weights checkpoint and checkpoint utils
weifengpy Apr 24, 2024
589191e
fix lora meta device bug
weifengpy Apr 24, 2024
c801f26
save optim state dict
weifengpy Apr 25, 2024
19a2d70
mark TODO
weifengpy Apr 25, 2024
441da10
optimizer foreach=True for DTensor
weifengpy Apr 25, 2024
750b9e5
clip grad norm
weifengpy Apr 25, 2024
3d632d5
switch to ptd state dict api
weifengpy Apr 26, 2024
cb3abb3
add profiler
weifengpy May 1, 2024
dfcdde3
qlora 7b config
weifengpy May 1, 2024
e68804a
use torchao copy_
weifengpy May 1, 2024
b6fad93
Merge pull request #1 from weifengpy/fsdp2
weifengpy May 1, 2024
d6af9a2
enable saving checkpoint
weifengpy May 1, 2024
7bbe522
Merge pull request #2 from weifengpy/fsdp2
weifengpy May 1, 2024
b616394
optimizer state dict: load on rank0 and broadcast
weifengpy May 1, 2024
a400497
import Optimizer
weifengpy May 1, 2024
e9de63c
resume training
weifengpy May 3, 2024
05d3895
prepare for full test
weifengpy May 3, 2024
7a5bb80
prepare for full test
weifengpy May 3, 2024
64bf49c
remove profiler
weifengpy May 3, 2024
cb1bba4
passed integration test
weifengpy May 4, 2024
ac516e9
remove uncesssary change
weifengpy May 4, 2024
bfde704
Merge branch 'main' into fsdp2
weifengpy May 4, 2024
102db31
bring back state dict validation
weifengpy May 4, 2024
0b66651
align indent on comment
weifengpy May 4, 2024
672aabb
remove unused import
weifengpy May 4, 2024
6af2723
switch to ptd state dict and keep self implemented in record
weifengpy May 8, 2024
42ad99c
clean unused code
weifengpy May 8, 2024
74f6175
remove cuda value error
weifengpy May 8, 2024
f1b8a5e
comment on to_empty
weifengpy May 8, 2024
36e6829
fix memory issues by switching model state dict api
weifengpy May 8, 2024
08cd1fd
clean for review
weifengpy May 8, 2024
559bc4d
Merge branch 'main' into fsdp2
weifengpy May 8, 2024
2333134
fix linter
weifengpy May 9, 2024
49a0364
fix checkpoint loading
weifengpy May 9, 2024
dc2ce02
expecttest CI depedency
weifengpy May 9, 2024
0a604aa
ci depdencecy
weifengpy May 9, 2024
fa83140
fix CI issue
weifengpy May 10, 2024
6203a1f
Merge branch 'main' into qlora
weifengpy May 10, 2024
4b5a895
Merge branch 'pytorch:main' into fsdp2
weifengpy May 10, 2024
1080e2c
Merge branch 'fsdp2' into qlora
weifengpy May 10, 2024
1a70498
rebase qlora
weifengpy May 10, 2024
cb862e9
rebase qlora
weifengpy May 10, 2024
21f5458
sync lora changes
weifengpy May 14, 2024
33773bd
push qlora for perf measurement
weifengpy May 14, 2024
483028b
fix meta init + cpu offloading
weifengpy May 15, 2024
cf42618
init RotaryPositionalEmbeddings in both fresh training and resume
weifengpy May 15, 2024
b519d50
import cpu offloading when needed
weifengpy May 17, 2024
8600ced
FSDP(CheckpointWrapper(Model))
weifengpy May 22, 2024
b2fd531
bring back cpu offloading
weifengpy May 22, 2024
bb8a8bc
remove model.to
weifengpy May 29, 2024
db71c5c
apply nf4 when loading model state dict
weifengpy May 30, 2024
16bf2de
move lora to cpu when cpu offloading
weifengpy May 30, 2024
4908773
added compile
janeyx99 May 22, 2024
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
5 changes: 3 additions & 2 deletions pyproject.toml
Original file line number Diff line number Diff line change
Expand Up @@ -25,7 +25,7 @@ dependencies = [
"omegaconf",

# Quantization
"torchao==0.1",
"torchao==0.2",
]
dynamic = ["version"]

Expand All @@ -41,12 +41,13 @@ tune = "torchtune._cli.tune:main"
dev = [
"bitsandbytes>=0.43.0",
"pre-commit",
"pytest",
"pytest==7.4.0",
"pytest-cov",
"pytest-mock",
"pytest-integration",
"tensorboard",
"wandb",
"expecttest==0.1.6",
]

[tool.setuptools.dynamic]
Expand Down
92 changes: 92 additions & 0 deletions recipes/configs/llama2/7B_qlora_fsdp2_dummy.yaml
Original file line number Diff line number Diff line change
@@ -0,0 +1,92 @@
# Config for single device QLoRA with lora_finetune_single_device.py
# using a Llama2 7B model
#
# This config assumes that you've run the following command before launching
# this run:
# tune download meta-llama/Llama-2-7b-hf --output-dir /tmp/Llama-2-7b-hf --hf-token <HF_TOKEN>
#
# To launch on a single device, run the following command from root:
# tune run lora_finetune_single_device --config llama2/7B_qlora_single_device
#
# You can add specific overrides through the command line. For example
# to override the checkpointer directory while launching training
# you can run:
# tune run lora_finetune_single_device --config 7B_qlora_single_device checkpointer.checkpoint_dir=<YOUR_CHECKPOINT_DIR>
#
# This config works only for training on single device.

# Model Arguments
model:
_component_: torchtune.models.llama2.qlora_llama2_7b
lora_attn_modules: ['q_proj', 'v_proj', 'k_proj'] # removed output_proj to match AnswerAI for apples<=>apples comparison
apply_lora_to_mlp: True
apply_lora_to_output: False
lora_rank: 64
lora_alpha: 16

tokenizer:
_component_: torchtune.models.llama2.llama2_tokenizer
path: /tmp/Llama-2-7b-hf/tokenizer.model

checkpointer:
_component_: torchtune.utils.FullModelHFCheckpointer
checkpoint_dir: /tmp/Llama-2-7b-hf
checkpoint_files: [
pytorch_model-00001-of-00002.bin,
pytorch_model-00002-of-00002.bin
]
adapter_checkpoint: null
recipe_checkpoint: null
output_dir: /tmp/Llama-2-7b-hf
model_type: LLAMA2
resume_from_checkpoint: False

# Dataset and Sampler
dataset:
_component_: torchtune.datasets.dummy_dataset
max_seq_len: 2048
num_samples: 48
seed: null
shuffle: True
batch_size: 8

# Optimizer and Scheduler
optimizer:
_component_: torch.optim.AdamW
weight_decay: 0.01
lr: 3e-4
lr_scheduler:
_component_: torchtune.modules.get_cosine_schedule_with_warmup
num_warmup_steps: 1

loss:
_component_: torch.nn.CrossEntropyLoss

fsdp:
cpu_offload: True

# Training
epochs: 1
max_steps_per_epoch: null
gradient_accumulation_steps: 1
compile: False

# Logging
output_dir: /tmp/qlora_finetune_output
metric_logger:
_component_: torchtune.utils.metric_logging.DiskLogger
log_dir: ${output_dir}
log_every_n_steps: 1
log_peak_memory_stats: True

# Environment
device: cuda
dtype: bf16
enable_activation_checkpointing: True

# # Show case the usage of pytorch profiler
# # Set enabled to False as it's only needed for debugging training
# profiler:
# _component_: torchtune.utils.profiler
# enabled: True
# output_dir: ${output_dir}/torchtune_perf_tracing.json
21 changes: 12 additions & 9 deletions recipes/configs/llama2/7B_qlora_single_device.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -21,7 +21,7 @@ model:
lora_attn_modules: ['q_proj', 'v_proj', 'k_proj', 'output_proj']
apply_lora_to_mlp: True
apply_lora_to_output: False
lora_rank: 8
lora_rank: 64
lora_alpha: 16

tokenizer:
Expand All @@ -43,11 +43,11 @@ resume_from_checkpoint: False

# Dataset and Sampler
dataset:
_component_: torchtune.datasets.alpaca_cleaned_dataset
train_on_input: True
_component_: torchtune.datasets.dummy_dataset
max_seq_len: 2048
seed: null
shuffle: True
batch_size: 2
batch_size: 8

# Optimizer and Scheduler
optimizer:
Expand All @@ -56,15 +56,18 @@ optimizer:
lr: 3e-4
lr_scheduler:
_component_: torchtune.modules.get_cosine_schedule_with_warmup
num_warmup_steps: 100
num_warmup_steps: 1

loss:
_component_: torch.nn.CrossEntropyLoss

fsdp:
cpu_offload: False

# Training
epochs: 1
max_steps_per_epoch: null
gradient_accumulation_steps: 16
max_steps_per_epoch: 3
gradient_accumulation_steps: 1
compile: False

# Logging
Expand All @@ -73,7 +76,7 @@ metric_logger:
_component_: torchtune.utils.metric_logging.DiskLogger
log_dir: ${output_dir}
log_every_n_steps: 1
log_peak_memory_stats: False
log_peak_memory_stats: True

# Environment
device: cuda
Expand All @@ -84,5 +87,5 @@ enable_activation_checkpointing: True
# Set enabled to False as it's only needed for debugging training
profiler:
_component_: torchtune.utils.profiler
enabled: False
enabled: True
output_dir: ${output_dir}/torchtune_perf_tracing.json
91 changes: 91 additions & 0 deletions recipes/configs/llama3/70B_qlora_fsdp2_dummy.yaml
Original file line number Diff line number Diff line change
@@ -0,0 +1,91 @@
# Model Arguments
model:
_component_: torchtune.models.llama3.lora_llama3_70b
lora_attn_modules: ['q_proj', 'k_proj', 'v_proj']
apply_lora_to_mlp: False
apply_lora_to_output: False
lora_rank: 64
lora_alpha: 16

tokenizer:
_component_: torchtune.models.llama3.llama3_tokenizer
path: /tmp/Meta-Llama-3-70b/original/tokenizer.model

checkpointer:
_component_: torchtune.utils.FullModelHFCheckpointer
checkpoint_dir: /tmp/Meta-Llama-3-70b
checkpoint_files: [
model-00001-of-00030.safetensors,
model-00002-of-00030.safetensors,
model-00003-of-00030.safetensors,
model-00004-of-00030.safetensors,
model-00005-of-00030.safetensors,
model-00006-of-00030.safetensors,
model-00007-of-00030.safetensors,
model-00008-of-00030.safetensors,
model-00009-of-00030.safetensors,
model-00010-of-00030.safetensors,
model-00011-of-00030.safetensors,
model-00012-of-00030.safetensors,
model-00013-of-00030.safetensors,
model-00014-of-00030.safetensors,
model-00015-of-00030.safetensors,
model-00016-of-00030.safetensors,
model-00017-of-00030.safetensors,
model-00018-of-00030.safetensors,
model-00019-of-00030.safetensors,
model-00020-of-00030.safetensors,
model-00021-of-00030.safetensors,
model-00022-of-00030.safetensors,
model-00023-of-00030.safetensors,
model-00024-of-00030.safetensors,
model-00025-of-00030.safetensors,
model-00026-of-00030.safetensors,
model-00027-of-00030.safetensors,
model-00028-of-00030.safetensors,
model-00029-of-00030.safetensors,
model-00030-of-00030.safetensors,
]
recipe_checkpoint: null
output_dir: /tmp/Meta-Llama-3-70b
model_type: LLAMA3
resume_from_checkpoint: False

# Dataset and Sampler
dataset:
_component_: torchtune.datasets.dummy_dataset
max_seq_len: 2048
num_samples: 12
seed: null
shuffle: True
batch_size: 2

# Optimizer and Scheduler
optimizer:
_component_: torch.optim.AdamW
weight_decay: 0.01
lr: 3e-4
lr_scheduler:
_component_: torchtune.modules.get_cosine_schedule_with_warmup
num_warmup_steps: 1

loss:
_component_: torch.nn.CrossEntropyLoss

# Training
epochs: 1
max_steps_per_epoch: null
gradient_accumulation_steps: 1

# Logging
output_dir: /tmp/qlora_finetune_70B_output
metric_logger:
_component_: torchtune.utils.metric_logging.DiskLogger
log_dir: ${output_dir}
log_every_n_steps: 1
log_peak_memory_stats: True

# Environment
device: cuda
dtype: bf16
enable_activation_checkpointing: True
Loading
0