8000 GitHub - jhb115/kbc_practice
[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to content

jhb115/kbc_practice

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

23 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

<<<<<<< HEAD

Knowledge Base Completion (kbc)

This code reproduces results in Canonical Tensor Decomposition for Knowledge Base Completion (ICML 2018).

Installation

Create a conda environment with pytorch cython and scikit-learn :

conda create --name kbc_env python=3.7
source activate kbc_env
conda install --file requirements.txt -c pytorch

Then install the kbc package to this environment

python setup.py install

Datasets

To download the datasets, go to the kbc/scripts folder and run:

chmod +x download_data.sh
./download_data.sh

Once the datasets are download, add them to the package data folder by running :

python kbc/process_datasets.py

This will create the files required to compute the filtered metrics.

Results

In addition to the results in the paper, here are the performances of ComplEx regularized with the weighted N3 on several datasets, for several dimensions.

FB15k

Learning rate : 0.1 (0.01 for rank 2000)

Batch size : 1000 (100 for rank 2000)

Max Epochs : 100 (200 for rank 2000)

rank 5 25 50 100 500 2000
MRR 0.36 0.61 0.78 0.83 0.84 0.86
H@1 0.27 0.52 0.73 0.79 0.80 0.83
H@3 0.41 0.67 0.81 0.85 0.87 0.87
H@10 0.55 0.77 0.86 0.89 0.91 0.91
reg 1e-5 1e-5 1e-5 7.5e-4 1e-2 2.5e-3
#Params 163k 815k 1.630M 3.259M 1.630M 65.184M

WN18

Learning rate : 0.1

Batch_size : 1000

Max Epochs : 20

rank 5 8 16 25 50 100 500 2000
MRR 0.19 0.45 0.92 0.94 0.95 0.95 0.95 0.95
H@1 0.14 0.37 0.91 0.94 0.94 0.94 0.94 0.94
H@3 0.20 0.50 0.93 0.94 0.95 0.95 0.95 0.95
H@10 0.29 0.60 0.94 0.95 0.95 0.95 0.96 0.96
reg 1e-3 5e-4 5e-4 1e-3 5e-3 5e-2 5e-2 5e-2
#Params 410k 656k 1.311M 2.049M 4.098M 8.196M 40.979M 163.916M

FB15K-237

Learning rate : 0.1

Batch Size : 100 (1000 for rank 1000)

Max Epochs : 100

rank 5 25 50 100 500 1000 2000
MRR 0.28 0.33 0.34 0.35 0.36 0.37 0.37
H@1 0.20 0.24 0.25 0.26 0.27 0.27 0.27
H@3 0.31 0.36 0.37 0.39 0.40 0.40 0.40
H@10 0.44 0.51 0.52 0.54 0.56 0.56 0.56
reg 5e-4 5e-2 5e-2 5e-2 5e-2 5e-2 5e-2
#Params 150k 751k 1.502M 3.003M 15.015M 30.030M 60.060M

WN18RR

Learning rate : 0.1

Batch Size : 100 (1000 for rank 8)

Max Epochs : 100

rank 5 8 16 25 50 100 500 2000
MRR 0.26 0.36 0.42 0.44 0.46 0.47 0.49 0.49
H@1 0.20 0.38 0.39 0.41 0.43 0.43 0.44 0.44
H@3 0.29 0.38 0.42 0.45 0.47 0.49 0.50 0.50
H@10 0.36 0.41 0.46 0.49 0.52 0.56 0.58 0.58
reg 5e-4 5e-4 5e-2 1e-1 1e-1 1e-1 1e-1 1e-1
#Params 410k 655k 1.311M 2.048M 4.097M 8.193M 40.975M 163.860M

YAGO3-10

Learning rate : 0.1

Batch Size : 1000

Max Epochs : 100

rank 5 16 25 50 100 500 1000
MRR 0.15 0.34 0.46 0.54 0.56 0.57 0.58
H@1 0.10 0.26 0.38 0.47 0.49 0.50 0.50
H@3 0.16 0.37 0.50 0.58 0.60 0.62 0.62
H@10 0.25 0.50 0.60 0.67 0.69 0.71 0.71
reg 1e-3 1e-4 5e-3 5e-3 5e-3 5e-3 5e-3
#Params 1.233M 3.944M 6.163M 12.326M 24.652M 123.262M 246.524M

License

kbc is CC-BY-NC licensed, as found in the LICENSE file.

kbc_practice

aabdec35a06fd95dd6abce757eff9c6f20cb7681

About

No description, website, or topics provided.

Resources

License

Code of conduct

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 2

  •  
  •  
0