8000 GitHub - jiarenz/SOTIP: Improved Spiral Projection MR Fingerprinting via Memory-Efficient Synergic Optimization of 3D Spiral Trajectory, Image Reconstruction, and Parameter Estimation (SOTIP)
[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to content
/ SOTIP Public

Improved Spiral Projection MR Fingerprinting via Memory-Efficient Synergic Optimization of 3D Spiral Trajectory, Image Reconstruction, and Parameter Estimation (SOTIP)

Notifications You must be signed in to change notification settings

jiarenz/SOTIP

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

5 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Improved Spiral Projection MR Fingerprinting via Memory-Efficient Synergic Optimization of 3D Spiral Trajectory, Image Reconstruction, and Parameter Estimation (SOTIP)

This repository contains the official implementation of:

Jiaren Zou, Yun Jiang, Sydney Kaplan, Nicole Seiberlich, and Yue Cao.
Improved Spiral Projection MR Fingerprinting via Memory-Efficient Synergic Optimization of 3D Spiral Trajectory, Image Reconstruction, and Parameter Estimation (SOTIP).
IEEE Transactions on Medical Imaging, 2025.
[DOI: 10.1109/TMI.2025.3559467]


Overview

SOTIP is a memory- and computation-efficient model-based deep learning (MBDL) framework for full 3D spiral MR Fingerprinting (MRF).
It enables fast, high-resolution T1 and T2 mapping through:

  • Memory-efficient MBDL reconstruction for non-Cartesian MRF.
  • Joint optimization of temporal subspace image reconstruction and parameter estimation.
  • Rotation angle optimization of 3D spiral sampling trajectories.

Repository Structure

SOTIP-master/
    fcnn.py                  # Fully Connected Neural Network for parameter estimation
    network_experiments.sh   # Bash script to organize training experiments
    phantom_generation.py    # Script to load phantoms and in vivo data
    train_CNN.py             # Main training script
    env.yaml                 # Environment file. Additional requirement: MIRTorch (https://github.com/guanhuaw/MIRTorch)
    unet/
        model.py             # U-Net for temporal subspace coefficient (TSC) image reconstruction
        unet_parts.py        # U-Net building blocks
    utils/
        data_processing.py   # Data preprocessing utilities
        data_analysis.py     # Evaluation and analysis tools

About

Improved Spiral Projection MR Fingerprinting via Memory-Efficient Synergic Optimization of 3D Spiral Trajectory, Image Reconstruction, and Parameter Estimation (SOTIP)

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published
0