8000 GitHub - jmeyer24/DisCo: Scene Graph Disentanglement and Composition for Generalizable Complex Image Generation
[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to content
/ DisCo Public
forked from XiongWenye/DisCo

Scene Graph Disentanglement and Composition for Generalizable Complex Image Generation

License

Notifications You must be signed in to change notification settings

jmeyer24/DisCo

 
 

Repository files navigation

DisCo

A pytorch implementation of paper Scene Graph Disentanglement and Composition for Generalizable Complex Image Generation

Requirements

conda env create -n disco python=3.8
conda activate disco
pip install -r requirement.txt

Dataset

Download VisualGenome dataset here or wherever convenient for you. Then run script ./DisCo/prepare_data/filter_visual_genome.py and ./DisCo/prepare_data/construct_textual_graph.py to prepare data.

Train

accelerate launch train_disco.py --use_ema --resolution=512 --batch_size=8 --gradient_accumulation_steps=2 --gradient_checkpointing --max_train_steps=50000 --learning_rate=1e-05  --lr_scheduler="linear" --checkpointing_steps 5000

Update

Clone the DisCo repository from https://github.com/jmeyer24/DisCo.git into the scratch (?) folder Adapt it, prepare the data and then train the whole thing

Preparation

## Get the repository (slightly modified)
git clone https://github.com/jmeyer24/DisCo.git

## get the datasets and models
bash DisCo/preparations.sh

Train Job

# Train the model with standard setup
accelerate launch ./DisCo/train_disco.py --use_ema --resolution=512 --batch_size=8 --gradient_accumulation_steps=2 --gradient_checkpointing --max_train_steps=50000 --learning_rate=1e-05  --lr_scheduler="linear" --checkpointing_steps 5000

About

Scene Graph Disentanglement and Composition for Generalizable Complex Image Generation

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 98.4%
  • Shell 1.6%
0