8000 GitHub - jpainam/multi-view
[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to content

jpainam/multi-view

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

7 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Pytorch Re-ID implementation

Prerequisites

  • Python 3.6
  • GPU Memory >= 6G
  • Numpy
  • Pytorch 0.3+

Data preparation

First, run python prepare.py to prepare the dataset. Preparation creates views in each identity. The output folder should likes

0743--
      |--view_0
      |--view_1
      |--view_3--
                |--1479_c3s3_080744_06.jpg
                |--1479_c3s3_080694_04

Training

To train the network, use the command

python train.py 
`--data` '/home/paul/datasets/market1501/multiviews' 
`--epochs` 100 
`--b 4` (batch size) 
`--lr` 0.0001 (Learning rate)
`--momentum` 0.9 
`--lr-decay-freq` 30 
`--lr-decay` 0.1

Most of these parameters are set to default, so you can only run python train.py

To resume or use the the pretrained weight resnet from ImageNet, add

--resume --pretrained

Testing

To test a trained model, use:

python test.py
python evaluate_gpu (for a gpu evaluation)
python evaluate.py (run on CPU)

Current results

Datasets Rank 1 Rank5 Rank10 Rank20 mAP
Market-1501 - - - -
DukeMTMC-ReID
CUHK03

How to cite

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

0