8000 GitHub - kakao/kanana: Kanana: Compute-efficient Bilingual Language Models
[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to content

kakao/kanana

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

6 Commits
 
 
 
 

Repository files navigation


Kanana Logo

🤗 1.5 HF Models   |   📕 1.5 Blog   |   📜 Technical Report

News 🔥


Table of Contents


Kanana 1.5

Kanana 1.5, a newly introduced version of the Kanana model family, presents substantial enhancements in coding, mathematics, and function calling capabilities over the previous version, enabling broader application to more complex real-world problems. This new version now can handle up to 32K tokens length natively and up to 128K tokens using YaRN, allowing the model to maintain coherence when handling extensive documents or engaging in extended conversations. Furthermore, Kanana 1.5 delivers more natural and accurate conversations through a refined post-training process.

Note

Neither the pre-training nor the post-training data includes Kakao user data.

Performance

Base Model Evaluation

Models MMLU KMMLU HAERAE HumanEval MBPP GSM8K
Kanana-Flag-1.5-32.5B 76.76 61.90 89.18 73.17 65.60 81.50
Kanana-Flag-32.5B 77.68 62.10 90.47 51.22 63.40 70.05
Kanana-Essence-1.5-9.8B 68.27 52.78 86.34 64.63 61.60 71.57
Kanana-Essence-9.8B 67.61 50.57 84.97 40.24 53.60 63.61
Kanana-Nano-1.5-3B 59.23 47.30 78.00 46.34 46.80 61.79
Kanana-Nano-2.1B 54.83 44.80 77.09 31.10 46.20 46.32

Open-source Base Model Evaluation

Models MMLU KMMLU HAERAE HumanEval MBPP GSM8K
Kanana-1.5-8B 64.24 48.94 82.77 61.59 57.80 63.53
Kanana-8B* 64.22 48.30 83.41 40.24 51.40 57.09
Kanana-1.5-2.1B 56.30 45.10 77.46 52.44 47.00 55.95
Kanana-Nano-2.1B 54.83 44.80 77.09 31.10 46.20 46.32

* This model is not an open-sourced, just for comparison with Kanana-1.5-8B


Instruct Model Evaluation

Models MT-Bench KoMT-Bench IFEval HumanEval+ MBPP+ GSM8K (0-shot) MATH MMLU (0-shot, CoT) KMMLU (0-shot, CoT) FunctionChatBench
Kanana-Flag-1.5-32.5B 8.13 8.12 82.70 79.88 71.96 93.03 75.96 82.76 64.10 67.17
Kanana-Flag-32.5B 8.33 8.03 84.59 78.66 69.84 91.66 58.08 81.08 64.19 65.67
Kanana-Essence-1.5-9.8B 7.88 7.35 76.34 72.56 66.93 90.07 62.02 72.85 52.00 51.43
Kanana-Essence-9.8B 7.81 7.65 80.20 72.56 68.52 84.91 42.24 70.64 50.76 26.77
Kanana-Nano-1.5-3B 7.01 6.52 70.08 70.73 64.29 80.36 56.70 59.69 37.60 55.37
Kanana-Nano-2.1B 6.40 5.90 71.97 63.41 62.43 72.32 29.26 52.48 38.51 26.10

Open-source Instruct Model Evaluation

Models MT-Bench KoMT-Bench IFEval HumanEval+ MBPP+ GSM8K (0-shot) MATH MMLU (0-shot, CoT) KMMLU (0-shot, CoT) FunctionChatBench
Kanana-1.5-8B† 7.76 7.63 80.11 76.83 67.99 87.64 67.54 68.82 48.28 58.00
Kanana-8B* 7.13 6.92 76.91 62.20 43.92 79.23 37.68 66.50 47.43 17.37
Kanana-1.5-2.1B† 7.01 6.54 68.61 68.90 65.08 81.43 60.62 53.87 32.93 53.70
Kanana-Nano-2.1B 6.40 5.90 71.97 63.41 62.43 72.32 29.26 52.48 38.51 26.10

† Models released under Apache 2.0 are trained on the latest versions compared to other models.

* This model is not an open-sourced, just for comparison with Kanana-1.5-8B


Long Context

The current approach we use for extending context length to 128k has limitations when applied to models with fewer parameters(~3B models only support 32k). We are therefore refining this approach and intend to implement it across all models going forward soon.

Kanana-Flag-1.5-32.5B

Kanana-Flag-1.5-32.5B-Base

Below is a Needle-in-a-Haystack performance of Kanana-Flag-1.5-32.5B-Base model which was trained on a target context length of 32K.

  • (top): evaluated with native 32K context length
  • (bottom): extended to 128K context length using YaRN

Kanana-Flag-1.5-32.5B-Instruct

Below is a Needle-in-a-Haystack performance of Kanana-Flag-1.5-32.5B-Instruct model which was trained on a target context length of 32K.

  • (top): evaluated with native 32K context length
  • (bottom): extended to 128K context length using YaRN

Kanana-Essence-1.5-9.8B

Kanana-Essence-1.5-9.8B-Base

Below is a Needle-in-a-Haystack performance of Kanana-Essence-1.5-9.8B-Base model which was trained on a target context length of 32K.

  • (top): evaluated with native 32K context length
  • (bottom): extended to 128K context length using YaRN

Kanana-Essence-1.5-9.8B-Instruct

Below is a Needle-in-a-Haystack performance of Kanana-Essence-1.5-9.8B-Instruct model which was trained on a target context length of 32K.

  • (top): evaluated with native 32K context length
  • (bottom): extended to 128K context length using YaRN

Note

Other models to be updated soon


Processing 32K+ Length

Currently, the config.json uploaded to HuggingFace is configured for token lengths of 32,768 or less. To process tokens beyond this length, YaRN must be applied. By updating the config.json with the following parameters, you can apply YaRN to handle token sequences up 8000 to 128K in length:

"rope_scaling": {
    "factor": 4.4,
    "original_max_position_embeddings": 32768,
    "type": "yarn",
    "beta_fast": 64,
    "beta_slow": 2
},

Contributors

  • Language Model Training: Yunju Bak, Doohae Jung, Boseop Kim, Nayeon Kim, Hojin Lee, Jaesun Park, Minho Ryu
  • Language Model Alignment: Jiyeon Ham, Seungjae Jung, Hyunho Kim, Hyunwoong Ko, Changmin Lee, Daniel Wontae Nam
  • AI Engineering: Youmin Kim, Hyeongju Kim

Kanana 1.0

View the details about Kanana 1.0

We introduce Kanana, a series of bilingual language models (developed by Kakao) that demonstrate exceeding performance in Korean and competitive performance in English. The computational cost of Kanana is significantly lower than that of state-of-the-art models of similar size. The report details the techniques employed during pre-training to achieve compute-efficient yet competitive models, including high-quality data filtering, staged pre-training, depth up-scaling, and pruning and distillation. Furthermore, the report outlines the methodologies utilized during the post-training of the Kanana models, encompassing supervised fine-tuning and preference optimization, aimed at enhancing their capability for seamless interaction with users. Lastly, the report elaborates on plausible approaches used for language model adaptation to specific scenarios, such as embedding, function calling, and Retrieval Augmented Generation (RAG). The Kanana model series spans from 2.1B to 32.5B parameters with 2.1B models (base, instruct, embedding, function call, and RAG) publicly released to promote research on Korean language models.

Neither the pre-training nor the post-training data includes Kakao user data.

Performance

Below are partial report on the performance of the Kanana model series. Please refer to the Technical Report for the full results.

Base Model Evaluation

Models MMLU KMMLU HAERAE HumanEval MBPP GSM8K
27b+ scale
Kanana-Flag-32.5b 77.68 62.10 90.47 51.22 63.40 70.05
Qwen2.5-32b 83.10 63.15 75.16 50.00 73.40 82.41
Gemma-2-27b 75.45 51.16 69.11 51.22 64.60 74.37
EXAONE-3.5-32b 72.68 46.36 82.22 - - -
Aya-Expanse-32b 74.52 49.57 80.66 - - -
7b+ scale
Kanana-Essence-9.8b 67.61 50.57 84.98 40.24 53.60 63.61
Llama-3.1-8b 65.18 41.02 61.78 35.37 48.60 50.87
Qwen2.5-7b 74.19 51.68 67.46 56.71 63.20 83.85
Gemma-2-9b 70.34 48.18 66.18 37.20 53.60 68.16
EXAONE-3.5-7.8b 65.36 45.30 77.54 - - -
Aya-Expanse-8b 62.52 40.11 71.95 - - -
2b+ scale
Kanana-Nano-2.1b 54.83 44.80 77.09 31.10 46.20 46.32
Llama-3.2-3b 56.40 35.57 47.66 25.61 39.00 27.37
Qwen2.5-3b 65.57 45.28 61.32 37.80 55.60 69.07
Gemma-2-2b 52.89 30.67 45.55 20.12 28.20 24.72
EXAONE-3.5-2.4b 59.27 43.58 69.65 - - -
70b+ scale
Llama-3.1-70b 78.93 53.00 76.35 57.32 66.60 81.73
Qwen2.5-72b 86.12 68.57 80.84 55.49 76.40 92.04

Instruct Model Evaluation

Instruction-following Benchmarks

Models MT-Bench LogicKor KoMT-Bench WildBench IFEval
27b+ scale
Kanana-Flag-32.5b 8.356 9.524 8.058 54.14 0.856
Qwen2.5-32b 8.331 8.988 7.847 51.13 0.822
Gemma-2-27b 8.088 8.869 7.373 46.46 0.817
EXAONE-3.5-32b 8.375 9.202 7.907 54.30 0.845
Aya-Expanse-32b 7.788 8.941 7.626 48.36 0.735
7b+ scale
Kanana-Essence-9.8b 7.769 8.964 7.706 47.27 0.799
Llama-3.1-8b 7.500 6.512 5.336 33.20 0.772
Qwen2.5-7b 7.625 7.952 6.808 41.31 0.760
Gemma-2-9b 7.633 8.643 7.029 40.92 0.750
EXAONE-3.5-7.8b 8.213 9.357 8.013 50.98 0.826
Aya-Expanse-8b 7.131 8.357 7.006 38.50 0.645
2b+ scale
Kanana-Nano-2.1b 6.400 7.964 5.857 25.41 0.720
Llama-3.2-3b 7.050 4.452 3.967 21.91 0.767
Qwen2.5-3b 6.969 6.488 5.274 25.76 0.355
Gemma-2-2b 7.225 5.917 4.835 28.71 0.428
EXAONE-3.5-2.4b 7.919 8.941 7.223 41.68 0.790
70b+ scale
Llama-3.1-70b 8.275 8.250 6.970 46.50 0.875
Qwen2.5-72b 8.619 9.214 8.281 55.25 0.861

General Benchmarks

Models MMLU KMMLU HAE-RAE HumanEval+ MBPP+ GSM8K MATH
27b+ scale
Kanana-Flag-32.5b 81.08 64.19 68.18 77.44 69.84 90.83 57.82
Qwen2.5-32b 84.40 59.37 48.30 82.32 71.96 95.30 81.90
Gemma-2-27b 78.01 49.98 46.02 70.12 70.90 91.05 53.80
EXAONE-3.5-32b 78.30 55.44 52.27 78.66 70.90 93.56 76.80
Aya-Expanse-32b 74.49 42.35 51.14 64.63 65.61 75.06 42.82
7b+ scale
Kanana-Essence-9.8b 70.64 50.76 47.16 72.56 69.05 84.91 42.24
Llama-3.1-8b 71.18 39.24 40.91 60.98 57.67 82.71 49.86
Qwen2.5-7b 77.23 46.87 37.50 73.78 70.63 91.58 75.22
Gemma-2-9b 73.47 44.47 39.77 59.76 64.55 87.72 48.10
EXAONE-3.5-7.8b 72.62 52.09 46.02 79.27 66.67 89.99 73.50
Aya-Expanse-8b 61.23 35.78 39.20 42.68 56.88 78.85 30.80
2b+ scale
Kanana-Nano-2.1b 52.48 38.51 33.52 63.41 62.43 72.32 29.26
Llama-3.2-3b 56.09 3.07 17.05 56.71 50.26 66.57 38.18
Qwen2.5-3b 69.18 38.33 32.39 67.68 64.02 84.00 65.72
Gemma-2-2b 57.69 6.99 7.95 35.37 45.24 49.81 21.68
EXAONE-3.5-2.4b 63.19 14.27 14.20 70.73 59.79 83.78 64.04
70b+ scale
Llama-3.1-70b 83.48 39.08 53.41 75.61 66.40 91.66 63.98
Qwen2.5-72b 87.14 65.78 60.80 81.10 75.66 95.45 82.60

Embedding Model Performance

Backbone Kanana-Nano-2.1b Llama-3.2-3b Qwen2.5-3b Llama-3.2-1b Qwen-2.5-1.5b
English 51.56 53.28 54.00 48.77 50.60
Korean 65.00 59.43 62.10 54.68 54.60
Avg. 58.28 56.35 58.05 51.73 52.60

Contributors

  • Pre-training: Yunju Bak, Doohae Jung, Boseop Kim, Nayeon Kim, Hojin Lee, Jaesun Park, Minho Ryu
  • Post-training: Jiyeon Ham, Seungjae Jung, Hyunho Kim, Hyunwoong Ko, Changmin Lee, Daniel Wontae Nam, Kyoung-Woon On
  • Adaptation: Seulye Baeg, Junrae Cho, Taegyeong Eo, Sunghee Jung, Jieun Kang, EungGyun Kim, Eunhwa Kim, Byeongil Ko, Daniel Lee, Donghun Lee, Minchul Lee, Miok Lee, Shinbok Lee, Minho Ryu, Gaeun Seo

Citation

@misc{kananallmteam2025kananacomputeefficientbilinguallanguage,
      title={Kanana: Compute-efficient Bilingual Language Models}, 
      author={Kanana LLM Team and Yunju Bak and Hojin Lee and Minho Ryu and Jiyeon Ham and Seungjae Jung and Daniel Wontae Nam and Taegyeong Eo and Donghun Lee and Doohae Jung and Boseop Kim and Nayeon Kim and Jaesun Park and Hyunho Kim and Hyunwoong Ko and Changmin Lee and Kyoung-Woon On and Seulye Baeg and Junrae Cho and Sunghee Jung and J
5F5D
ieun Kang and EungGyun Kim and Eunhwa Kim and Byeongil Ko and Daniel Lee and Minchul Lee and Miok Lee and Shinbok Lee and Gaeun Seo},
      year={2025},
      eprint={2502.18934},
      archivePrefix={arXiv},
      primaryClass={cs.CL},
      url={https://arxiv.org/abs/2502.18934}, 
}

Contact

About

Kanana: Compute-efficient Bilingual Language Models

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 26

0