Open
Description
Issue for tracking and coordinating mlx backend work:
mlx.math
-
fft
-
fft2
-
rfft
-
irfft
-
stft
-
istft
-
logsumexp
mlx - add missing convert_to_tensor #19578 -
qr
-
segment_sum
mlx - implement segment_sum and segment_max #19652 -
segment_max
mlx - implement segment_sum and segment_max #19652 -
erfinv
feat(math): support erfinv on mlx #19628
mlx.numpy
-
einsum
-
bincount
-
nonzero
-
cross
-
vdot
-
nan_to_num
-
copy
-
roll
-
median
Implementedmedian(...)
function. #19568 Implement missing functions in mlx backend #19574 -
meshgrid
Implement missing functions in mlx backend #19574 -
conjugate
-
arctan2
Added arctan2 operation #19759 -
quantile
-
imag
-
real
-
select
-
argpartition
mlx - add argpartition to numpy #19680 -
slogdet
-
select
-
vectorize
-
correlate
-
diag
mlx - fix diag and diagonal in numpy #19714 -
diagonal
mlx - fix diag and diagonal in numpy #19714
mlx.image
-
rgb_to_grayscale
mlx - add rgb_to_grayscale #19609 -
resize
- mlx - image.resize addcrop_to_aspect_ratio
argument #19699
mlx.nn
-
max_pool
-
avg_pool
-
conv
-
depthwise_conv
-
separable_conv
-
conv_transpose
-
ctc_loss
mlx.rnn
-
rnn
-
lstm
-
gru
mlx.linalg
-
cholesky
-
det
-
eig
-
eigh
-
inv
-
lu_factor
-
norm
mlx - add linalg.norm #19698 -
qr
-
solve
-
solve_triangular
-
svd
mlx.core
- np.ndarray of i64 is being cast to i32 in mlx during conversion if dtype is not passed
- [BUG] mlx crashes with msg - uncaught exception of type std::invalid_argument: [Scatter::eval_gpu] Does not support int64 ml-explore/mlx#1076
- [BUG]
np.ndarray
of bfloat16 using ml_dtypes is being interpreted as complex64 ml-explore/mlx#1075 - [BUG] arithmetic operations with numpy arrays are not commutative ml-explore/mlx#1066
- [Feature] arctan2 ml-explore/mlx#1065