This code is implemented in PyTorch, and we perform the experiments under the following environment settings:
- python = 3.8
- torch = 1.10.0
- torchvision = 0.11.1
- timm = 0.6.7
conda env create -f environment.yaml
I think the code can run under other versions of the environment, but I haven't tried.
- Create a folder
data/
- CIFAR 100: should automatically be downloaded
- ImageNet-R: download dataset from https://people.eecs.berkeley.edu/~hendrycks/imagenet-r.tar. After unzipping, place it into
data/
folder - DomainNet: download from http://ai.bu.edu/M3SDA/, place it into
data/
folder
All commands should be run under the project root directory. Currently, the code has been validated on 1 A6000 GPU (48G) and 4 2080ti GPUs (11G).
python main.py --device your_device --config configs/cifar100_inflora.json
python main.py --device your_device --config configs/cifar100_inflorab5.json
python main.py --device your_device --config configs/cifar100_infloraca.json
python main.py --device your_device --config configs/mimg10_inflora.json
python main.py --device your_device --config configs/mimg10_inflorab5.json
python main.py --device your_device --config configs/mimg10_infloraca.json
python main.py --device your_device --config configs/mimg20_inflora.json
python main.py --device your_device --config configs/mimg20_inflorab5.json
python main.py --device your_device --config configs/mimg5_inflora.json
python main.py --device your_device --config configs/mimg5_inflorab5.json
python main.py --device your_device --config configs/domainnet_inflora.json
python main.py --device your_device --config configs/domainnet_inflorab5.json
@inproceedings{liang2024inflora,
title={InfLoRA: Interference-Free Low-Rank Adaptation for Continual Learning},
author={Liang, Yan-Shuo and Li, Wu-Jun},
booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
pages={23638--23647},
year={2024}
}
We thank the following repos providing helpful components/functions in our work.