8000 GitHub - pr4-kp/simplicial-homology: Topology honors project for computing topological invariants of simplicial complexes
[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to content

pr4-kp/simplicial-homology

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

12 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Simplicial Homology Algorithms

An implementation of algorithms used in computational topology. Created for the MATH 551 honors project.

Usage

Creating a Simplicial Complex Object

simplicialcomplex.py implements the SimplicialComplex object. It can be constructed with the dimension of the complex

K = SimplicialComplex(2)

$k$-simplices can be added by the method add_simplex

K.add_simplex([0, 1, 2])
K.add_simplex([1, 2])
K.add_simplex([1])

Topological Invariants

The Euler characteristic of a SimplicialComplex $K$ by is returned calling

K.euler_characteristic()

A list of Betti numbers up to the dimension of $K$ is returned by calling

K.betti_numbers()

Tests

In the tester.py file, there are example calculations done on the $2$-sphere $\mathbb{S}^2$ and the torus $\mathbb{T}^2$.

Todo:

  • Simplex data structure
    • Make a filetype for data structure
  • Implement boundary operator (matrix)
  • Betti number algorithms
  • Compute invariants for other simplicial complexes

About

Topology honors project for computing topological invariants of simplicial complexes

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

0