8000 GitHub - primasanjaya/muat: conda package for muat
[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to content

primasanjaya/muat

Repository files navigation

Mutation Attention

Latest Release Bioconda License Conda Downloads Issues Stars

Conda package for Mutation Attention deep learning tool for tumour type and subtype classification

Quick Start

  1. Clone the muat Repository

    git clone https://github.com/primasanjaya/muat.git
  2. Navigate to the muat Directory.

    cd muat
  3. Create the Conda Environment.
    To create the conda environment, run:

    conda env create -f muat-env.yml
  4. Activate the Conda Environment.
    After creating the environment, activate it with:

    conda activate muat-env
  5. Install muat
    Install muat via bioconda channel

    conda install bioconda::muat
  6. Verify the Installation
    To test if the installation was successful, run:

    muat -h

You will see:

Mutation Attention Tool

positional arguments:
  {download,preprocessing,predict,train,benchmark}
                        Available commands
    download            Download the dataset.
    preprocess          Preprocess the dataset.
    predict             Predict samples.
    train               Train the MuAt model.
    predict-ensemble    Run the prediction using the best MuAt ensemble models

Docker container installation

You can build docker container from source by running build_docker.sh
or you can access the prebuild one from https://biocontainers.pro/tools/muat

Quick Test

The example of SNV,MNV vcf file is in example_files/0a6be23a-d5a0-4e95-ada2-a61b2b5d9485.consensus.20160830.somatic.snv_mnv.vcf.gz.
This file was written with hg19. To run prediction on this file, execute:

💡 Tips: use absolute paths (not relative paths) to ensure successful execution.

Run the prediction (exactly using this command)

(muat-env)$ muat predict wgs --hg19 genome_reference/hg19.fa --mutation-type 'snv+mnv' --input-filepath 'example_files/0a6be23a-d5a0-4e95-ada2-a61b2b5d9485.consensus.20160830.somatic.snv_mnv.vcf.gz' --result-dir results

For VCF Files Written with hg38

To predict using VCF files written with hg38, run:

(muat-env)$ muat predict wgs --hg38 '/path/to/genome_reference/hg38.fa' --mutation-type 'snv+mnv' --input-filepath 'path/to/sample.vcf.gz' --result-dir 'path/to/result_dir/'

Predicting preprocessed data samples (read preprocessing steps here)

(muat-env)$ muat predict wgs --no-preprocessing --mutation-type 'snv+mnv' --input-filepath 'path/to/sample.token.gc.genic.exonic.cs.tsv.gz' --result-dir 'path/to/result_dir/'

Run MuAt benchmark models

Example cli to predict samples using the best MuAt ensemble models:

(muat-env)$ muat predict-ensemble muat-wgs --hg19 '/path/to/genome_reference/hg19.fa' --mutation-type 'snv+mnv' --input-filepath 'path/to/sample.vcf.gz' --result-dir 'path/to/result_dir/'

Additional Resources

  • Download PCAWG: Read README_download.md for details on downloading PCAWG Dataset.
  • Preprocessing: Read README_preprocessing.md for details on preprocessing.
  • General Training: Read README_MuAtTraining.md for general training instructions.
  • Full Training of PCAWG Dataset: Read README_PCAWG.md for full training instructions on the PCAWG dataset.
  • Training and Predicting Genomics England Dataset: Read README_GEL.md for complete training and prediction instructions on the Genomics England dataset.

About

conda package for muat

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages

0