The English introduction is shown below the Chinese version.
pymodhook
是一个记录任意对Python模块的调用的库,用于Python逆向分析。
pymodhook
库类似于Android的xposed框架,但不仅能记录函数的调用参数和返回值,还能记录模块的类的任意方法调用,以及任意派生对象的访问,基于pyobject.objproxy库实现。
运行命令pip install pymodhook
,即可。
hook了numpy
和matplotlib
库的示例:
from pymodhook import *
init_hook()
hook_modules("numpy", "matplotlib.pyplot", for_=["__main__"]) # 记录numpy和matplotlib的调用
enable_hook()
import numpy as np
import matplotlib.pyplot as plt
arr = np.array(range(1,11))
arr_squared = arr ** 2
mean = np.mean(arr)
std_dev = np.std(arr)
print(mean, std_dev)
plt.plot(arr, arr_squared)
plt.show()
# 显示记录的代码
print(f"原始调用记录:\n{get_code()}\n")
print(f"优化后的代码:\n{get_optimized_code()}")
运行后会出现类似IDA等工具生成的代码:
原始调用记录:
import numpy as np
matplotlib = __import__('matplotlib.pyplot')
var0 = matplotlib.pyplot
var1 = np.array
var2 = var1(range(1, 11))
var3 = var2 ** 2
var4 = np.mean
var5 = var4(var2)
var6 = var2.mean
var7 = var6(axis=None, dtype=None, out=None)
var8 = np.std
var9 = var8(var2)
var10 = var2.std
var11 = var10(axis=None, dtype=None, out=None, ddof=0)
ex_var12 = str(var5)
ex_var13 = str(var9)
var14 = var0.plot
var15 = var14(var2, var3)
var16 = var2.shape
var17 = var2.shape
var18 = var2[(slice(None, None, None), None)]
var19 = var18.ndim
var20 = var3.shape
var21 = var3.shape
var22 = var3[(slice(None, None, None), None)]
var23 = var22.ndim
var24 = var2.values
var25 = var2._data
var26 = var2.__array_struct__
var27 = var3.values
...
var51 = var41.__array_struct__
var52 = var0.show
var53 = var52()
优化后的代码:
import numpy as np
import matplotlib.pyplot as plt
var2 = np.array(range(1, 11))
plt.plot(var2, var2 ** 2)
plt.show()
-
init_hook(export_trivial_obj=True, hook_method_call=False, **kw)
初始化模块hook,需要在调用hook_module()
和hook_modules()
之前调用。export_trivial_obj
:是否不继续hook模块函数返回的基本类型(如整数、列表、字典等)。hook_method_call
:是否hook模块类实例的方法内部调用(即方法的self
传入的是ProxiedObj
而不是原先的对象)- 其它参数通过
**kw
传递给ObjChain
。
-
hook_module(module_name, for_=None, hook_once=False, deep_hook=False, deep_hook_internal=False, hook_reload=True)
钩住(hook)一个模块,后续导入这个模块时会返回hook后的模块。module_name
:要hook的模块名(如"numpy"
)。for_
:只有从特定模块(如["__main__"]
)导入时才应用hook,能避免底层模块之间相互依赖导致的报错。如果不提供,默认对所有模块全局应用hook。hook_once
:只在首次导入时返回hook后的库,后续直接返回原模块。deep_hook
:是否hook模块中的每个函数和类,而不是模块本身。deep_hook
为True
时模块始终被hook,for_
,hook_once
和enable_hook
不起作用。deep_hook_internal
:deep_hook
为True
时,是否hook以下划线开头的对象(双下划线对象如__loader__
除外)。hook_reload
:是否继续hook通过importlib.reload()
返回的同一新模块。
-
hook_modules(*modules, **kw)
一次hook多个模块,如hook_modules("numpy","matplotlib")
,关键字参数的其他用法同hook_module
函数。 -
unhook_module(module_name)
取消对指定模块的hook,包括deep_hook
后的模块。module_name
:要撤销hook的模块名。
-
enable_hook()
启用模块hook的全局开关(默认关闭)。启用后,导入被hook的模块时才会返回hook对象。deep_hook
为True
时不需要手动调用enable_hook
。 -
disable_hook()
禁用模块hook的全局开关。禁用时不会导入hook后的模块,除非使用了deep_hook=True
。 -
import_module(module_name)
导入并返回子模块对象,而不是根模块。module_name
:如"matplotlib.pyplot"
,会返回pyplot
子模块对象。
-
get_code(*args, **kw)
生成模块原始调用记录的Python代码,可用于重现当前对象依赖关系,以及库调用历史。 -
get_optimized_code(*args, **kw)
生成优化后的代码,同get_code
用法。(代码优化在内部使用了有向无环图(DAG),详细优化原理见pyobject库) -
get_scope_dump()
返回当前hook链的变量命名空间(作用域)字典的浅拷贝,用于调试和分析。 -
dump_scope(file=None)
将整个变量命名空间字典用pprint
输出到流file
,某个对象的__repr__()
方法出错时输出不会中断。file
默认为sys.stdout
。 -
getchain()
返回用于hook模块的全局pyobject.ObjChain
实例,用于手动操作ObjChain
。如果尚未调用init_hook()
,返回None
。
库在底层使用了pyobject.objproxy
库中的ObjChain
,用于动态代码生成,而本pymodhook
库是pyobject.objproxy
的高层封装。详细原理参见pyobject.objproxy的文档。
pymodhook-patches目录内部包含了多个以模块名命名的json文件,包含不能hook的自定义的属性和函数名,用于兼容特定的Python库。
如matplotlib.pyplot.json
的格式如下:
{
// 每个键是可选的
"export_attrs":["attr"], // 要导出的属性名(即plt.attr返回原始对象,而不是pyobject.ProxiedObj)
"export_funcs":["plot","show"], // 要导出的函数名(即函数的调用返回值是原始对象,而不是pyobject.ProxiedObj)
"alias_name":"plt" // 模块的常用别名,用于控制代码生成格式(如import matplotlib.pyplot as plt)
}
仓库的目录hook_win32包含了一个DLL注入的工具,由于只依赖于加载的python3x.dll,支持记录Nuitka/Cython打包的应用的模块调用,而不仅仅是PyInstaller。
备注:请勿用本工具注入未授权的商业软件!
首先用pip install pymodhook
安装pymodhook
及其依赖的pyobject
包,
再打开<Python安装目录>/Lib/site-packages
文件夹(Python安装目录视环境而异),将pyobject
包,pymodhook.py
,pymodhook-patches
目录,和__hook__.py复制到目录下:
另外如果是Python 3.8或以下的版本,还需要复制astor
模块。
__hook__.py
是注入的DLL执行的第一段Python代码,默认的__hook__.py
是:
# 放入打包程序目录的__hook__.py的模板
import atexit, pprint, traceback
CODE_FILE = "hook_output.py"
OPTIMIZED_CODE_FILE = "optimized_hook_output.py"
VAR_DUMP_FILE = "var_dump.txt"
ERR_FILE = "hooktool_err.log"
def export_code():
try:
with open(CODE_FILE, "w", encoding="utf-8") as f:
f.write(get_code())
with open(VAR_DUMP_FILE, "w", encoding="utf-8") as f:
dump_scope(file=f)
with open(OPTIMIZED_CODE_FILE, "w", encoding="utf-8") as f:
f.write(get_optimized_code())
except Exception:
with open(ERR_FILE, "w", encoding="utf-8") as f:
traceback.print_exc(file=f)
try:
from pymodhook import *
from pyobject.objproxy import ReprFormatProxy
init_hook()
hook_modules("wx","matplotlib.pyplot","requests",deep_hook=True) # 本行可修改
atexit.register(export_code)
except Exception:
with open(ERR_FILE, "w", encoding="utf-8") as f:
traceback.print_exc(file=f)
一般只需要将调用hook_modules()
的这行,修改成自定义的其他模块即可。deep_hook=True
选项一般用于Cython/Nuitka打包的应用,对于普通应用deep_hook
是可选的。
另外对于特定库,可能还需要自行修改pymodhook-patches目录。
在项目的Release页面下载DLLInject_win_amd64.zip。
下载后解压并运行hook_win32.exe,搜索目标进程并选中,再点击"Inject DLL"按钮:
如果注入成功,会看到这个提示:
注入成功后如果程序退出(非强制终止进程),模块hook的结果hook_output.py
, optimized_hook_output.py
和var_dump.txt
会在被注入进程的工作目录生成。
hook_output.py
是原始的详细调用记录,optimized_hook_output.py
是简化后的模块调用代码,var_dump.txt
为所有变量的转储。
如果结果生成失败,还会额外生成一个文件hooktool_err.log
,记录错误消息。
optimized_hook_output.py
的示例:
import tkinter as tk
Canvas = tk.Canvas
import matplotlib.pyplot as plt
import requests
var0 = tk.Tk()
ex_var1 = int(tk.wantobjects)
var15 = var0.tk
var0.title('Tk')
var0.withdraw()
var0.iconbitmap('paint.ico')
var0.geometry('400x300')
var0.overrideredirect(ex_var1)
var43 = Frame(var0, bg='gray92')
var43._last_child_ids = {}
var28 = Canvas(var43, bg='#d0d0d0', fg='#000000')
var28.pack(expand=ex_var1, fill='x')
var28._last_child_ids = {}
# external var53: <function object at 0x000001F3F0A27180>
var0.bind('<Button-1>', var53)
var0.mainloop()
...
var_dump.txt
的示例:
{...,
'ex_var855': True,
'ex_var860': True,
'ex_var875': True,
...
'var123': <function BaseWidget.__init__ at 0x04616B28>,
'var124': <tkinter.ttk.Button object .!frame.!button3>,
'var125': {'command': <bound method Painter.save of <painter.Painter object at 0x047298F0>>,
'text': '保存',
'width': 4},
'var126': None,
'var127': <function BaseWidget._setup at 0x04616AE0>,
'var128': {'command': <bound method Painter.save of <painter.Painter object at 0x047298F0>>,
'text': '保存',
'width': 4},
...
'var146': '.!frame.!button3',
'var147': <built-in method call of _tkinter.tkapp object at 0x048C3890>,
'var148': '',
'var152': <function BaseWidget.__init__ at 0x04616B28>,
'var153': <tkinter.ttk.Button object .!frame.!button4>,
'var154': {'command': <bound method Painter.clear of <painter.Painter object at 0x047298F0>>,
'text': '清除',
'width': 4},
...
}
pymodhook
is a library for recording arbitrary calls to Python modules, intended for Python reverse engineering and analysis.
The pymodhook
library is similar to the Xposed framework for Android, but it not only records function call arguments and return values—it can also record arbitrary method calls of module classes, as well as access to any derived objects, based on the pyobject.objproxy library.
Just run the command pip install pymodhook
.
An example that hooks the numpy
and matplotlib
libraries:
from pymodhook import *
init_hook()
hook_modules("numpy", "matplotlib.pyplot", for_=["__main__"]) # Record calls to numpy and matplotlib
enable_hook()
import numpy as np
import matplotlib.pyplot as plt
arr = np.array(range(1,11))
arr_squared = arr ** 2
mean = np.mean(arr)
std_dev = np.std(arr)
print(mean, std_dev)
plt.plot(arr, arr_squared)
plt.show()
# Display the recorded code
print(f"Raw call trace:\n{get_code()}\n")
print(f"Optimized code:\n{get_optimized_code()}")
After running, the output will be similar to that generated by tools like IDA:
Raw call trace:
import numpy as np
matplotlib = __import__('matplotlib.pyplot')
var0 = matplotlib.pyplot
var1 = np.array
var2 = var1(range(1, 11))
var3 = var2 ** 2
var4 = np.mean
var5 = var4(var2)
var6 = var2.mean
var7 = var6(axis=None, dtype=None, out=None)
var8 = np.std
var9 = var8(var2)
var10 = var2.std
var11 = var10(axis=None, dtype=None, out=None, ddof=0)
ex_var12 = str(var5)
ex_var13 = str(var9)
var14 = var0.plot
var15 = var14(var2, var3)
var16 = var2.shape
var17 = var2.shape
var18 = var2[(slice(None, None, None), None)]
var19 = var18.ndim
var20 = var3.shape
var21 = var3.shape
var22 = var3[(slice(None, None, None), None)]
var23 = var22.ndim
var24 = var2.values
var25 = var2._data
var26 = var2.__array_struct__
var27 = var3.values
...
var51 = var41.__array_struct__
var52 = var0.show
var53 = var52()
Optimized code:
import numpy as np
import matplotlib.pyplot as plt
var2 = np.array(range(1, 11))
plt.plot(var2, var2 ** 2)
plt.show()
-
init_hook(export_trivial_obj=True, hook_method_call=False, **kw)
Initializes module hooking. This must be called before usinghook_module()
orhook_modules()
.export_trivial_obj
: Whether to not hook basic types (such as int, list, dict) returned by module functions.hook_method_call
: Whether to hook internal method calls on module class instances (i.e., methods whereself
is aProxiedObj
instead of the original object).- Other parameters are passed to
ObjChain
via**kw
.
-
hook_module(module_name, for_=None, hook_once=False, deep_hook=False, deep_hook_internal=False, hook_reload=True)
Hooks a module so that later imports will return the hooked version.module_name
: The name of the module to hook (e.g.,"numpy"
).for_
: Only applies the hook when imported from specific modules (e.g.,["__main__"]
), to avoid errors caused by dependencies between lower-level modules. If not specified, the hook is applied globally.hook_once
: Only returns the hooked module the first time it is imported; subsequent imports return the original module.deep_hook
: Whether to hook every function and class within the module instead of just the module itself. Whendeep_hook
isTrue
, the module is always hooked, andfor_
,hook_once
, andenable_hook
have no effect.deep_hook_internal
: Ifdeep_hook
isTrue
, determines whether to hook objects whose names start with an underscore (excluding double-underscore objects like__loader__
).hook_reload
: Whether hooking is still applied afterimportlib.reload()
returns a new module.
-
hook_modules(*modules, **kw)
Hook multiple modules at once, for example,hook_modules("numpy","matplotlib")
. Other keyword parameters are the same as inhook_module
. -
unhook_module(module_name)
Unhook a specified module, including those hooked withdeep_hook
.module_name
: The name of the module to unhook.
-
enable_hook()
Enables the global hook switch (off by default). Only when enabled will imports return the hooked module. Not required ifdeep_hook=True
. -
disable_hook()
Disables the global hook switch. While disabled, imports will not return the hooked module unlessdeep_hook=True
is used. -
import_module(module_name)
Imports and returns a submodule object rather than the root module.module_name
: For example,"matplotlib.pyplot"
will return thepyplot
submodule.
-
get_code(*args, **kw)
Generates Python code for the raw call trace, which can be used to reconstruct the current object dependency relationships and usage history. -
get_optimized_code(*args, **kw)
Generates optimized code, similar toget_code
. (Code optimization internally uses a Directed Acyclic Graph, DAG, see details in pyobject library.). -
get_scope_dump()
Returns a shallow copy of the variable namespace (scope) dictionary of the hook chain, commonly used for debugging and analysis. -
dump_scope(file=None)
Dumps the entire variable namespace dictionary to the streamfile
usingpprint
. If an object's__repr__()
method encounters an error, the output will not be interrupted. The default forfile
issys.stdout
. -
getchain()
Returns the globalpyobject.ObjChain
instance used for module hooking, allowing manual manipulation. Ifinit_hook()
was not called, returnsNone
.
Internally, the library uses the ObjChain
class from the pyobject.objproxy
library for dynamic code generation. pymodhook
itself is a higher-level wrapper around pyobject.objproxy
. For more details, see the pyobject.objproxy documentation.
The pymodhook-patches
directory contains multiple JSON files named after Python modules. These files define custom attributes and function names that should not be hooked, ensuring compatibility with specific Python libraries.
For example, the structure of matplotlib.pyplot.json
is as follows:
{
// All keys are optional
"export_attrs": ["attr"], // Attribute names to export (i.e., `plt.attr` returns the original object instead of a `pyobject.ProxiedObj`)
"export_funcs": ["plot", "show"], // Function names to export (i.e., return values remain original objects instead of being wrapped)
"alias_name": "plt" // Common module alias (e.g., used for code generation formatting, such as `import matplotlib.pyplot as plt`)
}
The repository directory hook_win32 contains a DLL injection tool. Since it only relies on loaded python3x.dll
, it supports recording module calls of applications packaged with Nuitka/Cython, not just PyInstaller.
Note: Do NOT use this tool to inject any unauthorized commercial softwares!
Firstly, install pymodhook
and its dependency pyobject
using pip install pymodhook
.
Then navigate to <Python installation directory>/Lib/site-packages
(the Python installation directory may vary depending on the environment) and copy the pyobject
package, pymodhook.py
, the pymodhook-patches
directory, and __hook__.py into the directory:
Additionally, if using Python 3.8 or earlier, the astor
module must also be copied.
__hook__.py
is the first piece of Python code executed by the injected DLL. The default __hook__.py
is as follows:
# Template for __hook__.py to be placed in the packaged program directory
import atexit, pprint, traceback
CODE_FILE = "hook_output.py"
OPTIMIZED_CODE_FILE = "optimized_hook_output.py"
VAR_DUMP_FILE = "var_dump.txt"
ERR_FILE = "hooktool_err.log"
def export_code():
try:
with open(CODE_FILE, "w", encoding="utf-8") as f:
f.write(get_code())
with open(VAR_DUMP_FILE, "w", encoding="utf-8") as f:
dump_scope(file=f)
with open(OPTIMIZED_CODE_FILE, "w", encoding="utf-8") as f:
f.write(get_optimized_code())
except Exception:
with open(ERR_FILE, "w", encoding="utf-8") as f:
traceback.print_exc(file=f)
try:
from pymodhook import *
from pyobject.objproxy import ReprFormatProxy
init_hook()
hook_modules("wx","matplotlib.pyplot","requests",deep_hook=True) # This line can be modified by your own
atexit.register(export_code)
except Exception:
with open(ERR_FILE, "w", encoding="utf-8") as f:
traceback.print_exc(file=f)
Generally, you only need to modify the line calling hook_modules()
to include other custom modules. The deep_hook=True
option is typically used for applications packaged with Cython/Nuitka and is optional for regular applications.
Additionally, for specific libraries, you may need to manually modify the [pymodhook-patches directory](pymodhook-patches directory).
Download DLLInject_win_amd64.zip
from the project's Release page.
After downloading, extract and run hook_win32.exe
, search for the target process, select it, and click the "Inject DLL" button:
If the injection is successful, you will see this prompt:
After successful injection, if the program exits normally (without forced termination), the module hook results—hook_output.py
, optimized_hook_output.py
, and var_dump.txt
—will be generated in the working directory of the injected process.
hook_output.py
contains the raw, detailed call logs.optimized_hook_output.py
contains the simplified module call code.var_dump.txt
contains the dump of all variables.
If the result generation fails, an additional file hooktool_err.log
will be created to record the error messages.
Example of optimized_hook_output.py
:
import tkinter as tk
Canvas = tk.Canvas
import matplotlib.pyplot as plt
import requests
var0 = tk.Tk()
ex_var1 = int(tk.wantobjects)
var15 = var0.tk
var0.title('Tk')
var0.withdraw()
var0.iconbitmap('paint.ico')
var0.geometry('400x300')
var0.overrideredirect(ex_var1)
var43 = Frame(var0, bg='gray92')
var43._last_child_ids = {}
var28 = Canvas(var43, bg='#d0d0d0', fg='#000000')
var28.pack(expand=ex_var1, fill='x')
var28._last_child_ids = {}
# external var53: <function object at 0x000001F3F0A27180>
var0.bind('<Button-1>', var53)
var0.mainloop()
...
Example of var_dump.txt
:
{...,
'ex_var855': True,
'ex_var860': True,
'ex_var875': True,
...
'var123': <function BaseWidget.__init__ at 0x04616B28>,
'var124': <tkinter.ttk.Button object .!frame.!button3>,
'var125': {'command': <bound method Painter.save of <painter.Painter object at 0x047298F0>>,
'text': 'Save',
'width': 4},
'var126': None,
'var127': <function BaseWidget._setup at 0x04616AE0>,
'var128': {'command': <bound method Painter.save of <painter.Painter object at 0x047298F0>>,
'text': 'Save',
'width': 4},
...
'var146': '.!frame.!button3',
'var147': <built-in method call of _tkinter.tkapp object at 0x048C3890>,
'var148': '',
'var152': <function BaseWidget.__init__ at 0x04616B28>,
'var153': <tkinter.ttk.Button object .!frame.!button4>,
'var154': {'command': <bound method Painter.clear of <painter.Painter object at 0x047298F0>>,
'text': 'Clear',
'width': 4},
...
}