8000 GitHub - qhjqhj00/awesome-agentic-search: ๐Ÿ” Awesome Agentic Search is a curated list of papers, tools, and resources on agentic searchโ€”where AI agents plan, search, and reason to answer complex questions. Explore the latest research, benchmarks, and industry solutions for next-gen search-enhanced AI! ๐Ÿค–โœจ
[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to content

๐Ÿ” Awesome Agentic Search is a curated list of papers, tools, and resources on agentic searchโ€”where AI agents plan, search, and reason to answer complex questions. Explore the latest research, benchmarks, and industry solutions for next-gen search-enhanced AI! ๐Ÿค–โœจ

License

Notifications You must be signed in to change notification settings

qhjqhj00/awesome-agentic-search

Folders and files

NameName
Last commit message
Last commit date

Latest commit

ย 

History

30 Commits
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 

Repository files navigation

๐Ÿ” Awesome Agentic Search

๐Ÿค– Agentic search is an advanced AI approach where autonomous agents actively plan and execute multi-step, iterative searches to decompose complex queries, evaluate relevance, and synthesize responsesโ€”transforming them from passive retrievers into dynamic, reasoning-driven researchers.

๐ŸŽฏ Objectives

๐Ÿšง Note: This project is evolving rapidlyโ€”join the community by opening issues, submitting PRs, leaving comments, or โญ starring the repo to help build a leading resource for agentic search.

  • Research Collection: Curate and categorize comprehensive research work in agentic search, including papers, code implementations, and empirical findings

  • Interactive Demos: Build demonstration pages to showcase different agentic search methods and allow hands-on exploration of their capabilities

  • Evaluation Arena: Develop a Python toolkit for systematic evaluation and benchmarking of agentic search methods across diverse tasks and metrics

  • Training Gym: Create a Python framework for training and optimizing agentic search models, including reinforcement learning and other approaches

๐Ÿ“š Papers

For each paper, we provide the following information:

๐Ÿ‘จโ€๐ŸŽ“ First Author ยท ๐Ÿ“ง Corresponding Author (Last Author if not specified) ยท ๐Ÿ›๏ธ First Organization ยท ๐Ÿ“Š Dataset

Note: Please submit a PR if we missed anything!

๐Ÿ“Š Dataset Types:

General QA: NQ, TriviaQA, PopQA

Multi-Hop QA: HotpotQA, 2wiki, Musique, Bamboogle

Complex Task: GPQA, GAIA, WebWalker QA, Humanity's Last Exam (HLE)

Report Generation: Glaive

Math & Coding: AIME, MATH500, AMC, LiveCodeBench

๐ŸŽ“ Training-based

Search-R1: Training LLMs to Reason and Leverage Search Engines with Reinforcement Learning GitHub Repo stars

๐Ÿ‘จโ€๐ŸŽ“ Bowen Jin ยท ๐Ÿ“ง Jiawei Han ยท ๐Ÿ›๏ธ UIUC
๐Ÿ“Š Dataset: General QA, Multi-Hop QA ยท ๐Ÿค– Model: Qwen-2.5-3B / 7B ยท ๐ŸŽฏ Training: GRPO, PPO

An Empirical Study on Reinforcement Learning for Reasoning-Search Interleaved LLM Agents GitHub Repo stars

๐Ÿ‘จโ€๐ŸŽ“ Bowen Jin ยท ๐Ÿ“ง Jiawei Han ยท ๐Ÿ›๏ธ UIUC
๐Ÿ“Š Dataset: General QA, Multi-Hop QA ยท ๐Ÿค– Model: Qwen-2.5-3B / 7B / 14Bยท ๐ŸŽฏ Training: GRPO, PPO

Notes: a new version of Search-R1.

WebThinker: Empowering Large Reasoning Models with Deep Research Capability:GitHub Repo stars

๐Ÿ‘จโ€๐ŸŽ“ Xiaoxi Li ยท ๐Ÿ“ง Zhicheng Dou ยท ๐Ÿ›๏ธ GSAI, RUC
๐Ÿ“Š Dataset: Complex Task, Report Generation ยท ๐Ÿค– Model: QwQ 32B ยท ๐ŸŽฏ Training: SFT, DPO

DeepResearcher: Scaling Deep Research via Reinforcement Learning in Real-world Environments [code]

๐Ÿ‘จโ€๐ŸŽ“ Yuxiang Zheng ยท ๐Ÿ“ง Pengfei Liu ยท ๐Ÿ›๏ธ SJTU
๐Ÿ“Š Dataset: General QA, Multi-Hop QA ยท ๐Ÿค– Model: Qwen-2.5-7B ยท ๐ŸŽฏ Training: GRPO

R1-Searcher: Incentivizing the Search Capability in LLMs via Reinforcement Learning [code]

๐Ÿ‘จโ€๐ŸŽ“ Huatong Song ยท ๐Ÿ“ง Wayne Xin Zhao ยท ๐Ÿ›๏ธ GSAI, RUC
๐Ÿ“Š Dataset: General QA, Multi-Hop QA ยท ๐Ÿค– Model: Qwen-2.5-7B, Llama-3.1-8B ยท ๐ŸŽฏ Training: SFT, GRPO, REINFORCE++

R1-Searcher++: Incentivizing the Dynamic Knowledge Acquisition of LLMs via Reinforcement Learning [code]

๐Ÿ‘จโ€๐ŸŽ“ Huatong Song ยท ๐Ÿ“ง Wayne Xin Zhao ยท ๐Ÿ›๏ธ GSAI, RUC
๐Ÿ“Š Dataset: General QA, Multi-Hop QA ยท ๐Ÿค– Model: Qwen-2.5-7B ยท ๐ŸŽฏ Training: SFT, GRPO, REINFORCE++

SimpleDeepSearcher: Deep Information Seeking via Web-Powered Reasoning Trajectory Synthesis [code]

๐Ÿ‘จโ€๐ŸŽ“ Shuang Sun ยท ๐Ÿ“ง Wayne Xin Zhao ยท ๐Ÿ›๏ธ GSAI, RUC
๐Ÿ“Š Dataset: General QA, Multi-Hop QA ยท ๐Ÿค– Model: Qwen-2.5-7B / 32B, QwQ-32B ยท ๐ŸŽฏ Training: SFT, DPO, REINFORCE++

ZeroSearch: Incentivize the Search Capability of LLMs without Searching [code]

๐Ÿ‘จโ€๐ŸŽ“ Hao Sun ยท ๐Ÿ“ง Zile Qiao, Jiayan Guo, Yan Zhang ยท ๐Ÿ›๏ธ Tongyi Lab
๐Ÿ“Š Dataset: General QA, Multi-Hop QA ยท ๐Ÿค– Model: Qwen-2.5-3B / 7B, s LLaMA-3.2-3B ยท ๐ŸŽฏ Training: REINFORCE, GRPO, PPO

Chain-of-Retrieval Augmented Generation [code]

๐Ÿ‘จโ€๐ŸŽ“ Liang Wang ยท ๐Ÿ“ง Furu Wei ยท ๐Ÿ›๏ธ MSRA
๐Ÿ“Š Dataset: General QA, Multi-Hop QA ยท ๐Ÿค– Model: Llama-3.1-8B-Instruct ยท ๐ŸŽฏ Training: REINFORCE, GRPO, PPO

IKEA: Reinforced Internal-External Knowledge Synergistic Reasoning for Efficient Adaptive Search Agent [code]

๐Ÿ‘จโ€๐ŸŽ“ Ziyang Huang ยท ๐Ÿ“ง Kang Liu ยท ๐Ÿ›๏ธ IA, CAS
๐Ÿ“Š Dataset: General QA, Multi-Hop QA ยท ๐Ÿค– Model: Qwen-2.5-3B / 7B ยท ๐ŸŽฏ Training: GRPO

Scent of Knowledge: Optimizing Search-Enhanced Reasoning with Information Foraging

๐Ÿ‘จโ€๐ŸŽ“ Hongjin Qian ยท ๐Ÿ“ง Zheng Liu ยท ๐Ÿ›๏ธ BAAI
๐Ÿ“Š Dataset: General QA, Multi-Hop QA ยท ๐Ÿค– Model: Qwen-2.5-3B / 7B ยท ๐ŸŽฏ Training: GRPO, PPO

Search and Refine During Think: Autonomous Retrieval-Augmented Reasoning of LLMs [code]

๐Ÿ‘จโ€๐ŸŽ“ Yaorui Shi ยท ๐Ÿ“ง Xiang Wang ยท ๐Ÿ›๏ธ USTC
๐Ÿ“Š Dataset: General QA, Multi-Hop QA ยท ๐Ÿค– Model: Qwen-2.5-3B ยท ๐ŸŽฏ Training: GRPO

ConvSearch-R1: Enhancing Query Reformulation for Conversational Search with Reasoning via Reinforcement Learning [code]

๐Ÿ‘จโ€๐ŸŽ“ Changtai Zhu ยท ๐Ÿ“ง Xipeng Qiu ยท ๐Ÿ›๏ธ FDU
๐Ÿ“Š Dataset: Conversational QA ยท ๐Ÿค– Model: Qwen-2.5-3B / Llama-3.2-3B ยท ๐ŸŽฏ Training: SFT, GRPO

Process vs. Outcome Reward: Which is Better for Agentic RAG Reinforcement Learning [code]

๐Ÿ‘จโ€๐ŸŽ“ Wenlin Zhang ยท ๐Ÿ“ง Xiangyu Zhao ยท ๐Ÿ›๏ธ CityUHK
๐Ÿ“Š Dataset: General QA, Multi-Hop QA ยท ๐Ÿค– Model: Qwen-2.5-7B ยท ๐ŸŽฏ Training: DPO

WebDancer: Towards Autonomous Information Seeking Agency [code]

๐Ÿ‘จโ€๐ŸŽ“ Jialong Wu ยท ๐Ÿ“ง Wenbiao Yin, Yong Jiang ยท ๐Ÿ›๏ธ Tongyi Lab
๐Ÿ“Š Dataset: Complex Task ยท ๐Ÿค– Model: Qwen-2.5-7B / 32B, QwQ-32B ยท ๐ŸŽฏ Training: DAPO

ReSearch: Learning to Reason with Search for LLMs via Reinforcement Learning [code]

๐Ÿ‘จโ€๐ŸŽ“ Mingyang Chen ยท ๐Ÿ“ง Fan Yang ยท ๐Ÿ›๏ธ Baichuan
๐Ÿ“Š Dataset: Multi-Hop QA ยท ๐Ÿค– Model: Qwen-2.5-7B / 32B ยท ๐ŸŽฏ Training: GRPO

๐Ÿ”„ Workflow-based

Search-o1: Agentic Search-Enhanced Large Reasoning Models: [code]

๐Ÿ‘จโ€๐ŸŽ“ Xiaoxi Li ยท ๐Ÿ“ง Zhicheng Dou ยท ๐Ÿ›๏ธ GSAI, RUC
๐Ÿ“Š Dataset: General QA, Multi-Hop QA, Complex Task, Math & Coding ยท ๐Ÿค– Model: QwQ-32B-Preview

Agentic Reasoning: Reasoning LLMs with Tools for the Deep Research [code]

๐Ÿ‘จโ€๐ŸŽ“ Junde Wu ยท ๐Ÿ“ง Yuyuan Liu ยท ๐Ÿ›๏ธ Oxford University
๐Ÿ“Š Dataset: Complex Task ยท ๐Ÿค– Model: APIs

Coding Agents with Multimodal Browsing are Generalist Problem Solvers [code]

๐Ÿ‘จโ€๐ŸŽ“ Aditya Bharat Soni ยท ๐Ÿ“ง Graham Neubigo ยท ๐Ÿ›๏ธ CMU
๐Ÿ“Š Dataset: Complex Task ยท ๐Ÿค– Model: claude-3-7-sonnet

๐Ÿ”ง Tool Using

Tool-Star: Empowering LLM-Brained Multi-Tool Reasoner via Reinforcement Learning [code]

๐Ÿ‘จโ€๐ŸŽ“ Guanting Dong ยท ๐Ÿ“ง Zhicheng Dou ยท ๐Ÿ›๏ธ GSAI, RUC
๐Ÿ“Š Dataset: General QA, Multi-Hop QA, Math & Coding ยท ๐Ÿค– Model: Qwen-2.5-3Bยท ๐ŸŽฏ Training: SFT,GRPO, PPO

OTC: Optimal Tool Calls via Reinforcement Learning

๐Ÿ‘จโ€๐ŸŽ“ Hongru Wang ยท ๐Ÿ“ง Heng Ji ยท ๐Ÿ›๏ธ CUHK
๐Ÿ“Š Dataset: General QA, Multi-Hop QA, Math & Coding ยท ๐Ÿค– Model: Qwen-2.5-3B / 7Bยท ๐ŸŽฏ Training: GRPO, PPO

๐Ÿ–ผ๏ธ Multi-Modal

Multimodal-Search-R1: Incentivizing LMMs to Search [code]

๐Ÿ‘จโ€๐ŸŽ“ Jinming Wu ยท ๐Ÿ“ง Zejun Ma ยท ๐Ÿ›๏ธ BUPT
๐Ÿ“Š Dataset: VQA ยท ๐Ÿค– Model: Qwen2.5-VL-Instruct-3B/7B ยท ๐ŸŽฏ Training: GRPO

Multimodal DeepResearcher: Generating Text-Chart Interleaved Reports From Scratch with Agentic Framework

๐Ÿ‘จโ€๐ŸŽ“ Zhaorui Yang ยท ๐Ÿ“ง Bo Zhang ยท ๐Ÿ›๏ธ ZJU
๐Ÿ“Š Dataset: Report Generation

๐Ÿ“Š Evaluation and Dataset

InfoDeepSeek: Benchmarking Agentic Information Seeking for Retrieval-Augmented Generation [code]

๐Ÿ‘จโ€๐ŸŽ“ Yunjia Xi ยท ๐Ÿ“ง Jianghao Lin ยท ๐Ÿ›๏ธ SJTU
๐Ÿ“Š Dataset: General QA, Multi-Hop QA

BrowseComp: A Simple Yet Challenging Benchmark for Browsing Agents [code]

๐Ÿ‘จโ€๐ŸŽ“ Jason Wei ยท ๐Ÿ“ง Amelia Glaese ยท ๐Ÿ›๏ธ OpenAI
๐Ÿ“Š Dataset: Web Browsing

HealthBench: Evaluating Large Language Models Towards Improved Human Health [code]

๐Ÿ‘จโ€๐ŸŽ“ Rahul K. Arora ยท ๐Ÿ“ง Karan Singhal ยท ๐Ÿ›๏ธ OpenAI
๐Ÿ“Š Dataset: Multi-turn Medical QA

ManuSearch: Democratizing Deep Search in Large Language Models with a Transparent and Open Multi-Agent Framework

๐Ÿ‘จโ€๐ŸŽ“ Lisheng Huang ยท ๐Ÿ“ง Wayne Xin Zhao ยท ๐Ÿ›๏ธ GSAI, RUC
๐Ÿ“Š Dataset: Web Browsing

WebWalker: Benchmarking LLMs in Web Traversal [code]

๐Ÿ‘จโ€๐ŸŽ“ Jialong Wu ยท ๐Ÿ“ง Deyu Zhou, Yong Jiang ยท ๐Ÿ›๏ธ SEU, Tongyi Lab
๐Ÿ“Š Dataset: Web Browsing

๐Ÿ“š Perspective and Survey

Agentic Information Retrieval

๐Ÿ‘จโ€๐ŸŽ“ Weinan Zhang ยท ๐Ÿ›๏ธ SJTU

๐Ÿข Industry Solutions

OpenAI's Deep Research: https://openai.com/index/introducing-deep-research/

Google's Gemini Pro: https://www.google.com/search/about/

X's Grok 3: https://x.ai/news/grok-3

Perplexity: https://www.perplexity.ai/

Jina AI: https://jina.ai/deepsearch/

Metasota: https://metaso.cn/

๐ŸŽฎ Demo

We are building a demo page to showcase different agentic search methods and allow hands-on exploration of their capabilities. Each demo will be integrated into a standardized retrieval and web browser interface with comparable settings, enabling comprehensive and fair comparisons across various approaches. This systematic evaluation will help identify strengths and limitations of different methods and advance the state-of-the-art in agentic search.

Currently, it looks like this: Demo

You can run the demo by serving the models via vllm:

vllm serve path_to_your_model --port 25900 --host 127.0.0.1

Then, build a search server, for example, use this:

bash retrieval_launch.sh

Config your serve address in config/demo_config.json, modify model list here.

Run the demo by:

streamlit run demo/app.py

๐Ÿ“ Slides

We maintain a collection of ๐Ÿ“Š paper presentation slides on Overleaf to facilitate learning and knowledge sharing in the agentic search community. Each presentation consists of 3-5 slides that concisely introduce key aspects of a paper, including motivation, methodology, and main results. These slides serve as quick references for understanding important works in the field and can be used for self-study, teaching, or research presentations.

๐Ÿ”— Check out our slides collection: Agentic Search Paper Slides

๐Ÿ† Arena

We are building an arena page to benchmark different agentic search methods in a unified evaluation framework. All methods will be integrated into standardized retrieval and web browser interfaces with comparable settings, enabling comprehensive and fair comparisons across various approaches. This systematic evaluation will help identify strengths and limitations of different methods and advance the state-of-the-art in agentic search.

๐Ÿ‹๏ธ Gym

We are organizing a collection of optimization frameworks and training approaches used in agentic search, including reinforcement learning methods like GRPO and PPO, as well as supervised fine-tuning techniques. This will help researchers understand and implement effective training strategies for their agentic search models.

Stay tuned for detailed tutorials and code examples on training agentic search systems!

๐Ÿค Contributing

We welcome contributions to this repository! If you have any suggestions or feedback, please feel free to open an issue or submit a pull request.

๐Ÿ“– Citation

If you find this repository useful, please consider citing it as follows:

@misc{awesome-agentic-search,
  author = {Hongjin Qian, Zheng Liu},
  title = {Awesome Agentic Search},
  year = {2025},
  publisher = {GitHub},

About

๐Ÿ” Awesome Agentic Search is a curated list of papers, tools, and resources on agentic searchโ€”where AI agents plan, search, and reason to answer complex questions. Explore the latest research, benchmarks, and industry solutions for next-gen search-enhanced AI! ๐Ÿค–โœจ

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 3

  •  
  •  
  •  
0