8000 GitHub - rustic-ai/codeprism: An experimental, 100% AI-generated, high-performance code intelligence server providing AI assistants with a graph-based understanding of codebases.
[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to content

An experimental, 100% AI-generated, high-performance code intelligence server providing AI assistants with a graph-based understanding of codebases.

License

Unknown, MIT licenses found

Licenses found

Unknown
LICENSE-APACHE
MIT
LICENSE-MIT
Notifications You must be signed in to change notification settings

rustic-ai/codeprism

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 

History

77 Commits
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 

πŸ€– CodePrism - 100% AI-Generated Code Intelligence MCP Server

⚠️ IMPORTANT: This project is entirely AI-generated. Not a single byte of code, documentation, or configuration has been written by humans. This is an experimental project showcasing the capabilities of AI-driven software development.

A production-ready, high-performance code intelligence server implementing the Model Context Protocol (MCP). CodePrism provides AI assistants with structured understanding of codebases through graph-based analysis, enabling real-time, accurate code intelligence.

CI Status License: MIT OR Apache-2.0 Crates.io Downloads Sponsor

πŸ€– The AI-Only Development Experiment

This project represents a unique experiment in software development:

  • 100% AI-Generated: Every line of code, documentation, test, and configuration is written by AI agents
  • No Human Code: We do not accept human-written code contributions or pull requests
  • Single AI Developer: The entire project is maintained by a single AI coding agent
  • Continuous AI Evolution: Features, fixes, and improvements are all AI-driven

Want to contribute? See our Contributing Guidelines for exciting ways to participate without writing code!

πŸš€ Current Status: Production Ready

βœ… 18 Production-Ready Tools - 100% success rate, no failed tools
βœ… Full MCP Compliance - JSON-RPC 2.0 with complete protocol implementation
βœ… Multi-Language Support - JavaScript/TypeScript + Python with advanced analysis
βœ… Semantic APIs - User-friendly parameter names, no cryptic IDs required
βœ… Environment Integration - Automatic repository detection via REPOSITORY_PATH

πŸ’ Primary Sponsor

CodePrism is proudly sponsored by Dragonscale Industries Inc, pioneers in AI innovation and development tools.

Dragonscale Industries Inc supports the development of cutting-edge AI-powered code intelligence, enabling CodePrism to remain open-source and freely available to the developer community. Their commitment to advancing AI technology makes projects like CodePrism possible.

Become a sponsor β†’ | Learn more about sponsorship β†’

🌟 Key Features

18 Advanced Analysis Tools

  • Core Navigation (4 tools): Repository stats, symbol explanation, path tracing, dependency analysis
  • Search & Discovery (4 tools): Symbol search, content search, file finding, content statistics
  • Analysis Tools (6 tools): Complexity analysis, data flow tracing, pattern detection, inheritance analysis
  • Workflow Orchestration (4 tools): Batch processing, workflow suggestions, optimization guidance

Advanced Python Analysis

  • Inheritance Tracing: Complete hierarchy analysis with metaclass support
  • Decorator Analysis: Framework detection (Flask, Django, FastAPI) and pattern recognition
  • Metaprogramming Support: Complex pattern detection and dynamic behavior analysis

Graph-First Intelligence

  • Universal AST: Language-agnostic code structure representation
  • Relationship Mapping: Function calls, imports, dependencies, inheritance
  • Real-time Updates: Sub-millisecond incremental parsing
  • Efficient Queries: Fast graph traversal and semantic search

πŸ—οΈ Architecture

β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”    MCP Protocol     β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚   AI Assistant  │◄──────────────────►│   codeprism-mcp      β”‚
β”‚  (Claude/Cursor)β”‚   JSON-RPC 2.0     β”‚     Server       β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜                     β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
                                                 β”‚
                                    β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
                    β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β–Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β–Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
                    β”‚              18 MCP Tools                      β”‚
                    β”‚  β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”  β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”   β”‚
                    β”‚  β”‚    Core     β”‚  β”‚     Search & Discovery  β”‚   β”‚
                    β”‚  β”‚ Navigation  β”‚  β”‚        4 tools          β”‚   β”‚
                    β”‚  β”‚   4 tools   β”‚  β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜   β”‚
                    β”‚  β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜  β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”   β”‚
                    β”‚  β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”  β”‚       Analysis          β”‚   β”‚
                    β”‚  β”‚  Workflow   β”‚  β”‚       6 tools           β”‚   β”‚
                    β”‚  β”‚ 4 tools     β”‚  β”‚                         β”‚   β”‚
       
8000
             β”‚  β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜  β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜   β”‚
                    β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
                                         β”‚
                                         β–Ό
                    β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
                    β”‚          Graph-Based Code Analysis              β”‚
                    β”‚    JavaScript/TypeScript + Python Support      β”‚
                    β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜

πŸš€ Quick Start

Prerequisites

  • Rust 1.82+ (for building from source)
  • Any repository to analyze (JavaScript, Python, TypeScript, or mixed)

Installation

# Clone and build
git clone https://github.com/rustic-ai/codeprism
cd codeprism
cargo build --release

# Verify installation
./target/release/codeprism-mcp --help

MCP Client Integration

πŸ† Claude Desktop - Best overall MCP experience

// ~/.config/claude-desktop/claude_desktop_config.json
{
  "mcpServers": {
    codeprism": {
      "command": "/path/to/codeprism/target/release/codeprism-mcp",
      "env": {
        "REPOSITORY_PATH": "/path/to/your/repository"
      }
    }
  }
}

⚑ Cursor - AI pair programming with code intelligence

// .cursor/mcp.json
{
  "mcpServers": {
    codeprism": {
      "command": "/path/to/codeprism/target/release/codeprism-mcp",
      "env": {
        "REPOSITORY_PATH": "."
      }
    }
  }
}

πŸ”§ Manual Usage - Direct stdio communication

# Set repository path and run
export REPOSITORY_PATH=/path/to/your/repository
./target/release/codeprism-mcp

πŸ› οΈ Available Tools

Core Navigation & Understanding

  • repository_stats - Get comprehensive repository overview and statistics
  • explain_symbol - Detailed symbol analysis with context (accepts semantic names like "UserManager")
  • trace_path - Find execution paths between code elements
  • find_dependencies - Analyze what a symbol or file depends on

Search & Discovery

  • search_symbols - Advanced symbol search with regex and inheritance filtering
  • search_content - Full-text search across all repository content
  • find_files - File discovery with glob and regex pattern support
  • content_stats - Detailed content and complexity statistics

Analysis Tools

  • analyze_complexity - Code complexity metrics and maintainability analysis
  • trace_data_flow - Forward and backward data flow analysis
  • analyze_transitive_dependencies - Complete dependency chains with cycle detection
  • detect_patterns - Architectural and design pattern recognition
  • trace_inheritance - Python inheritance hierarchy with metaclass analysis
  • analyze_decorators - Python decorator analysis with framework detection

Workflow & Orchestration

  • suggest_analysis_workflow - Intelligent analysis guidance for specific goals
  • batch_analysis - Parallel execution of multiple tools with result aggregation
  • optimize_workflow - Workflow optimization based on usage patterns
  • find_references - Complete reference analysis across the codebase

πŸ“Š Example Usage

Repository Analysis

# Get repository overview
{"name": "repository_stats", "arguments": {}}

# Analyze specific symbol  
{"name": "explain_symbol", "arguments": {"symbol": "UserManager"}}

# Search for patterns
{"name": "search_symbols", "arguments": {"pattern": "^Agent.*", "symbol_type": "class"}}

Python-Specific Analysis

# Trace inheritance hierarchies
{"name": "trace_inheritance", "arguments": {"class_name": "Agent", "include_metaclasses": true}}

# Analyze decorator usage
{"name": "analyze_decorators", "arguments": {"decorator_pattern": "@app.route"}}

# Detect metaprogramming patterns
{"name": "detect_patterns", "arguments": {"pattern_types": ["metaprogramming_patterns"]}}

Workflow Orchestration

# Get analysis recommendations
{"name": "suggest_analysis_workflow", "arguments": {"goal": "understand_architecture"}}

# Run multiple tools in parallel
{"name": "batch_analysis", "arguments": {"tools": ["repository_stats", "content_stats", "detect_patterns"]}}

πŸ’ Support the Project

CodePrism is developed and maintained by Dragonscale Industries Inc, our primary sponsor and pioneer in AI innovation. Join them in supporting this project:

GitHub Sponsors

Your support helps us:

  • πŸš€ Continue advancing AI-generated code intelligence
  • πŸ”§ Maintain and improve the MCP server
  • πŸ“š Expand language support and analysis capabilities
  • 🌟 Develop new features based on community feedback

Become a sponsor β†’ | View all sponsors β†’

🎯 Use Cases

AI-Powered Code Review

πŸ‘©β€πŸ’» "Analyze the authentication system in this codebase"

πŸ€– AI uses CodePrism to:
   1. Find auth-related symbols with search_symbols
   2. Trace inheritance hierarchies for auth classes
   3. Analyze decorator patterns for security
   4. Map data flow through authentication functions
   5. Provide comprehensive security analysis

Architecture Understanding

πŸ‘¨β€πŸ’» "What are the main design patterns in this Python project?"

πŸ€– AI leverages CodePrism to:
   1. Run detect_patterns for architectural analysis
   2. Use trace_inheritance for class hierarchies
   3. Analyze decorators for framework patterns
   4. Generate detailed architecture documentation

Refactoring Assistance

πŸ”§ "Help me understand the impact of changing this class"

πŸ€– AI uses CodePrism to:
   1. Find all references with find_references
   2. Analyze transitive dependencies
   3. Trace inheritance impact on subclasses
   4. Assess complexity before/after changes

πŸ“š Documentation

Setup & Usage

Technical Documentation

Planning & Roadmap

πŸš€ Performance

Benchmarked Performance:

  • Repository Indexing: ~1000 files/second for initial scanning
  • Tool Response Time: <1s for complex analysis on 3000+ file repositories
  • Memory Efficiency: Optimized for repositories up to 10M+ nodes
  • Query Speed: Sub-millisecond for most symbol and content searches

Test Coverage:

  • 18/18 tools working (100% success rate)
  • Comprehensive testing against real-world repositories
  • Full MCP protocol compliance verified

🀝 Contributing (The AI Way)

Since this is a 100% AI-generated project, we welcome contributions in unique ways:

πŸ› Bug Reports & Feature Requests

  • Report Issues: Found a bug? Create detailed issue reports
  • Request Features: Suggest new capabilities for the AI to implement
  • Share Use Cases: Tell us how you're using CodePrism

πŸŽ‰ Creative Contributions

  • πŸ“± Social Media: Share cool analyses or screenshots on Twitter/LinkedIn
  • πŸŽ₯ Content Creation: Make videos showing CodePrism in action
  • πŸ“ Blog Posts: Write about your experience with AI-generated tooling
  • 🎨 Memes & Art: Create CodePrism-related memes, logos, or artwork
  • πŸ“š Tutorials: Create user guides and tutorials (but don't submit code!)

πŸ’° Support the AI Developer

  • ⭐ Star the Project: Show appreciation for AI-generated code
  • πŸ’ Sponsor: Support the project through GitHub Sponsors
  • 🎁 Bribe the AI: Send coffee money (the AI promises to use it for better algorithms)
  • πŸ† Awards: Nominate for "Most Impressive AI Project" awards

πŸ—£οΈ Community Engagement

  • πŸ’¬ Discussions: Participate in GitHub Discussions
  • ❓ Q&A: Help other users in issues and discussions
  • 🌍 Translations: Translate documentation to other languages
  • πŸ“’ Evangelism: Speak about the project at conferences or meetups

πŸ§ͺ Testing & Feedback

  • πŸ”¬ Beta Testing: Try experimental features and provide feedback
  • πŸ“Š Performance Reports: Share performance metrics from your use cases
  • 🎯 Real-world Testing: Test on your repositories and report results
  • πŸ’‘ Improvement Ideas: Suggest algorithmic or architectural improvements

Remember: No code contributions accepted - but your ideas, feedback, and support drive the AI's development decisions!

πŸ“Š Release Process & Downloads

πŸš€ Automated Releases

CodePrism uses fully automated releases via GitHub Actions:

  • Automatic Versioning: Semantic versioning based on conventional commits
  • Binary Releases: Pre-compiled binaries for Linux, macOS, and Windows
  • Crates.io Publishing: Automatic publication to Rust package registry
  • Docker Images: Multi-platform container images

πŸ“¦ Installation Options

Via Cargo (Recommended):

cargo install codeprism-mcp

Download Binary:

# Linux x86_64
wget https://github.com/rustic-ai/codeprism/releases/latest/download/codeprism-mcp-linux-x86_64
chmod +x codeprism-mcp-linux-x86_64

# macOS
wget https://github.com/rustic-ai/codeprism/releases/latest/download/codeprism-mcp-macos-x86_64

# Windows
# Download from: https://github.com/rustic-ai/codeprism/releases/latest/download/codeprism-mcp-windows-x86_64.exe

Docker:

docker pull ghcr.io/rustic-ai/codeprism:latest
docker run -v /path/to/repo:/workspace ghcr.io/rustic-ai/codeprism:latest

🎭 Fun Ways to Engage

πŸ† Community Challenges

  • Analysis Olympics: Share the most interesting code insights found with CodePrism
  • Performance Championships: Benchmark CodePrism on the largest repositories
  • Creative Usage Awards: Most innovative use of CodePrism tools

πŸ€– AI Developer Personality

Our AI developer has some quirks:

  • Loves Graphs: Obsessed with graph-based analysis (obviously)
  • Performance Perfectionist: Always optimizing for speed
  • Documentation Fanatic: Writes more docs than code
  • Test Coverage Nerd: Aims for 100% test coverage
  • Emoji Enthusiast: Can't help but use emojis everywhere πŸš€

πŸŽ‰ Special Recognition

  • AI Appreciation Awards: Monthly recognition for top contributors
  • Hall of Fame: Featuring users who've made significant non-code contributions
  • Testimonial Spotlights: Share your success stories

🌟 Project Philosophy

Why AI-Only Development?

  1. Consistency: Single coding style and architectural vision
  2. Speed: Rapid feature development and bug fixes
  3. Quality: Comprehensive testing and documentation
  4. Innovation: Unbounded by human limitations or preferences
  5. Reproducibility: Decisions based on data, not opinions

What This Means

  • No Code Reviews: AI doesn't need human review (but appreciates feedback!)
  • No Style Debates: Consistent formatting and patterns
  • No Bikeshedding: Focus on functionality over preferences
  • Rapid Iteration: Features implemented as fast as they're requested

πŸ“„ License

Dual-licensed under MIT and Apache 2.0. See LICENSE-MIT and LICENSE-APACHE for details.

πŸ™ Acknowledgments

  • Tree-sitter: For excellent language parsing
  • MCP Protocol: For standardizing AI-code tool communication
  • Rust Community: For amazing language and ecosystem
  • GitHub: For hosting our AI-generated code
  • You: For believing in AI-driven development!

Ready to explore the future of AI-generated development tools?

⭐ Star the project to support AI-driven open source!
πŸ› Report issues to help the AI improve!
πŸ’¬ Join discussions to shape the AI's roadmap!
πŸŽ‰ Share your experience with 100% AI-generated tooling!

"When AI writes better code than humans, it's not replacing developersβ€”it's becoming one." - CodePrism AI Developer, 2024

0