A comprehensive stock analysis and prediction system that combines multiple AI approaches:
-
Stock Analysis & Prediction
- Real-time stock data fetching using yfinance and Tiingo APIs
- Technical analysis with candlestick visualization
- Price prediction using LSTM-CNN hybrid models
- Interactive dashboards for market monitoring
-
AI Integration
- LLM-powered fundamental analysis using GPT-4
- Custom LangChain agents for market research
- Deep learning models for price prediction
- Q-Learning implementation for trading decisions
-
Technical Implementation
- Streamlit-based interactive web interface
- Asynchronous data processing for real-time updates
- GPU-accelerated computations with PyTorch
- Custom neural network architectures with attention mechanisms
The system allows users to:
- Search and analyze any publicly traded company
- Get real-time price updates and predictions
- Access AI-powered fundamental analysis
- Visualize market data through interactive charts
A state-of-the-art algorithmic trading system leveraging deep reinforcement learning for autonomous trading strategies. This system combines advanced ML techniques with high-frequency trading capabilities to optimize portfolio performance across diverse market conditions.
- πΉ Autonomous trading via deep reinforcement learning
- πΉ Multi-agent system for market interaction
- πΉ Dynamic portfolio optimization
- πΉ Real-time market microstructure analysis
- πΉ Risk-adjusted return optimization
βββ PyTorch 2.0+ : Neural network framework
β βββ CUDA optimization
β βββ Distributed training
βββ Ray/RLlib : RL framework
β βββ PPO, DDPG, SAC algorithms
β βββ Multi-agent support
βββ TensorBoard : Training visualization
βββ pandas-ta : Technical analysis
βββ scikit-learn : Feature preprocessing
βββ NumPy/CuPy : GPU computation
βββ yfinance : Market data
βββ Tiingo : Financial data API
βββ Streamlit : Web interface
βββ FastAPI : REST endpoints
βββ LangChain : LLM integration
βββ Plotly/Dash : Interactive dashboards
βββ mplfinance : Candlestick charts
βββ NetworkX : Agent interaction graphs
MarketAnalysis
βββ Order Book Processing
β βββ Bid-ask imbalance
β βββ Order flow toxicity
β βββ Liquidity analysis
β
βββ Technical Indicators
β βββ Adaptive moving averages
β βββ Volatility metrics
β βββ Volume profiles
β
βββ Sentiment Analysis
βββ News processing
βββ Social media signals
βββ Market sentiment index
TradingStrategy
βββ Signal Generation
β βββ Multi-timeframe analysis
β βββ Regime detection
β βββ Alpha factor creation
β
βββ Position Management
β βββ Dynamic sizing
β βββ Risk allocation
β βββ Correlation analysis
β
βββ Execution Engine
βββ Smart order routing
βββ Transaction cost analysis
βββ Slippage optimization
RiskEngine
βββ Portfolio Analytics
β βββ Value at Risk (VaR)
β βββ Expected Shortfall
β βββ Beta exposure
β
βββ Position Controls
β βββ Dynamic stop-loss
β βββ Take-profit optimization
β βββ Exposure limits
β
βββ Market Impact
βββ Liquidity analysis
βββ Impact modeling
βββ Cost estimation
RLFramework
βββ Environment
β βββ Market simulator
β βββ Reward shaping
β βββ State space design
β
βββ Agent Architecture
β βββ LSTM-CNN hybrid
β βββ Attention mechanism
β βββ Multi-head output
β
βββ Training Pipeline
βββ Experience replay
βββ Curriculum learning
βββ Model validation
βββ Deep Learning : PyTorch with CUDA optimization
βββ RL Framework : Ray/RLlib for distributed training
βββ Data Pipeline : pandas-ta, scikit-learn
βββ Computation : NumPy/CuPy (GPU-accelerated)
βββ Visualization : Plotly/Dash
βββ Database : MongoDB, Redis
βββ API Layer : FastAPI
- π§ LSTM networks for temporal pattern recognition
- π Conv1D/Conv2D layers for feature extraction
- π Custom attention mechanisms
- π‘οΈ Dropout regularization (0.2)
- β‘ ReLU activation with orthogonal initialization
βββ Real-time Data Processing
β βββ Order book reconstruction
β βββ Market regime detection (HMM)
β βββ Sentiment analysis
β
βββ Technical Analysis
β βββ Custom indicators
β βββ Multi-timeframe analysis
β βββ Feature engineering
β
βββ Risk Management
βββ Position sizing
βββ Dynamic stop-loss
βββ Exposure controls
- β‘ Microsecond-precision execution
- π Smart order routing
- π Real-time risk monitoring
- π‘οΈ Transaction cost optimization
Input Layer (OHLCV + Features)
β
Conv1D/Conv2D Feature Extraction
β
LSTM Temporal Processing
β
Attention Layer
β
Dense Strategy Layer
β
Action Output (Trading Decisions)
- π Real-time market data integration
- π Continuous feature engineering
- π 90/10 train-validation split
- π― 20-day rolling window
- Environment Setup
conda create -n rl-trading python=3.9
conda activate rl-trading
pip install -r requirements.txt
- Configuration
cp config/example.yaml config/local.yaml
# Edit local.yaml with your settings
- Launch Training
python train.py --config configs/ppo_config.yaml
- Window Size: 20 days
- Batch Size: 64
- Learning Rate: 0.01
- Training Epochs: 150
- Prediction Horizon: 10 days
.
βββ π agents/ # RL implementations
βββ π data/ # Data pipeline
βββ π environments/ # Trading environments
βββ π models/ # Trained models
βββ π risk/ # Risk management
βββ π execution/ # Order execution
βββ π analysis/ # Research & reports