8000 GitHub - richiectr360/llm-trading
[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to content
8000

richiectr360/llm-trading

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 

History

5 Commits
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 

Repository files navigation

πŸ€– Advanced Reinforcement Learning for Quantitative Trading

πŸ“‹ Project Summary

A comprehensive stock analysis and prediction system that combines multiple AI approaches:

  1. Stock Analysis & Prediction

    • Real-time stock data fetching using yfinance and Tiingo APIs
    • Technical analysis with candlestick visualization
    • Price prediction using LSTM-CNN hybrid models
    • Interactive dashboards for market monitoring
  2. AI Integration

    • LLM-powered fundamental analysis using GPT-4
    • Custom LangChain agents for market research
    • Deep learning models for price prediction
    • Q-Learning implementation for trading decisions
  3. Technical Implementation

    • Streamlit-based interactive web interface
    • Asynchronous data processing for real-time updates
    • GPU-accelerated computations with PyTorch
    • Custom neural network architectures with attention mechanisms

The system allows users to:

  • Search and analyze any publicly traded company
  • Get real-time price updates and predictions
  • Access AI-powered fundamental analysis
  • Visualize market data through interactive charts

πŸ“Š Overview

A state-of-the-art algorithmic trading system leveraging deep reinforcement learning for autonomous trading strategies. This system combines advanced ML techniques with high-frequency trading capabilities to optimize portfolio performance across diverse market conditions.

🎯 Core Objectives

  • πŸ”Ή Autonomous trading via deep reinforcement learning
  • πŸ”Ή Multi-agent system for market interaction
  • πŸ”Ή Dynamic portfolio optimization
  • πŸ”Ή Real-time market microstructure analysis
  • πŸ”Ή Risk-adjusted return optimization

πŸ› οΈ Tech Stack

Deep Learning & RL

β”œβ”€β”€ PyTorch 2.0+          : Neural network framework
β”‚   β”œβ”€β”€ CUDA optimization
β”‚   └── Distributed training
β”œβ”€β”€ Ray/RLlib            : RL framework
β”‚   β”œβ”€β”€ PPO, DDPG, SAC algorithms
β”‚   └── Multi-agent support
└── TensorBoard         : Training visualization

Data Processing & APIs

β”œβ”€β”€ pandas-ta           : Technical analysis
β”œβ”€β”€ scikit-learn       : Feature preprocessing
β”œβ”€β”€ NumPy/CuPy        : GPU computation
β”œβ”€β”€ yfinance          : Market data
└── Tiingo           : Financial data API

Application Stack

β”œβ”€β”€ Streamlit          : Web interface
β”œβ”€β”€ FastAPI           : REST endpoints
└── LangChain        : LLM integration

Visualization

β”œβ”€β”€ Plotly/Dash       : Interactive dashboards
β”œβ”€β”€ mplfinance       : Candlestick charts
└── NetworkX        : Agent interaction graphs

🎯 Solutions

1. Market Analysis Engine

MarketAnalysis
β”œβ”€β”€ Order Book Processing
β”‚   β”œβ”€β”€ Bid-ask imbalance
β”‚   β”œβ”€β”€ Order flow toxicity
β”‚   └── Liquidity analysis
β”‚
β”œβ”€β”€ Technical Indicators
β”‚   β”œβ”€β”€ Adaptive moving averages
β”‚   β”œβ”€β”€ Volatility metrics
β”‚   └── Volume profiles
β”‚
└── Sentiment Analysis
    β”œβ”€β”€ News processing
    β”œβ”€β”€ Social media signals
    └── Market sentiment index

2. Trading Strategy Framework

TradingStrategy
β”œβ”€β”€ Signal Generation
β”‚   β”œβ”€β”€ Multi-timeframe analysis
β”‚   β”œβ”€β”€ Regime detection
β”‚   └── Alpha factor creation
β”‚
β”œβ”€β”€ Position Management
β”‚   β”œβ”€β”€ Dynamic sizing
β”‚   β”œβ”€β”€ Risk allocation
β”‚   └── Correlation analysis
β”‚
└── Execution Engine
    β”œβ”€β”€ Smart order routing
    β”œβ”€β”€ Transaction cost analysis
    └── Slippage optimization

3. Risk Management System

RiskEngine
β”œβ”€β”€ Portfolio Analytics
β”‚   β”œβ”€β”€ Value at Risk (VaR)
β”‚   β”œβ”€β”€ Expected Shortfall
β”‚   └── Beta exposure
β”‚
β”œβ”€β”€ Position Controls
β”‚   β”œβ”€β”€ Dynamic stop-loss
β”‚   β”œβ”€β”€ Take-profit optimization
β”‚   └── Exposure limits
β”‚
└── Market Impact
    β”œβ”€β”€ Liquidity analysis
    β”œβ”€β”€ Impact modeling
    └── Cost estimation

4. RL Implementation

RLFramework
β”œβ”€β”€ Environment
β”‚   β”œβ”€β”€ Market simulator
β”‚   β”œβ”€β”€ Reward shaping
β”‚   └── State space design
β”‚
β”œβ”€β”€ Agent Architecture
β”‚   β”œβ”€β”€ LSTM-CNN hybrid
β”‚   β”œβ”€β”€ Attention mechanism
β”‚   └── Multi-head output
β”‚
└── Training Pipeline
    β”œβ”€β”€ Experience replay
    β”œβ”€β”€ Curriculum learning
    └── Model validation

πŸ—οΈ Architecture

Core Stack

β”œβ”€β”€ Deep Learning    : PyTorch with CUDA optimization
β”œβ”€β”€ RL Framework    : Ray/RLlib for distributed training
β”œβ”€β”€ Data Pipeline   : pandas-ta, scikit-learn
β”œβ”€β”€ Computation     : NumPy/CuPy (GPU-accelerated)
β”œβ”€β”€ Visualization   : Plotly/Dash
β”œβ”€β”€ Database        : MongoDB, Redis
└── API Layer       : FastAPI

Neural Architecture

  • 🧠 LSTM networks for temporal pattern recognition
  • πŸ”„ Conv1D/Conv2D layers for feature extraction
  • πŸ“Š Custom attention mechanisms
  • πŸ›‘οΈ Dropout regularization (0.2)
  • ⚑ ReLU activation with orthogonal initialization

πŸ’‘ Key Features

Market Intelligence

β”œβ”€β”€ Real-time Data Processing
β”‚   β”œβ”€β”€ Order book reconstruction
β”‚   β”œβ”€β”€ Market regime detection (HMM)
β”‚   └── Sentiment analysis
β”‚
β”œβ”€β”€ Technical Analysis
β”‚   β”œβ”€β”€ Custom indicators
β”‚   β”œβ”€β”€ Multi-timeframe analysis
β”‚   └── Feature engineering
β”‚
└── Risk Management
    β”œβ”€β”€ Position sizing
    β”œβ”€β”€ Dynamic stop-loss
    └── Exposure controls

Trading Engine

  • ⚑ Microsecond-precision execution
  • πŸ”„ Smart order routing
  • πŸ“Š Real-time risk monitoring
  • πŸ›‘οΈ Transaction cost optimization

πŸš€ Implementation

Model Architecture

Input Layer (OHLCV + Features)
    ↓
Conv1D/Conv2D Feature Extraction
    ↓
LSTM Temporal Processing
    ↓
Attention Layer
    ↓
Dense Strategy Layer
    ↓
Action Output (Trading Decisions)

Data Pipeline

  • πŸ“ˆ Real-time market data integration
  • πŸ”„ Continuous feature engineering
  • πŸ“Š 90/10 train-validation split
  • 🎯 20-day rolling window

πŸ› οΈ Setup

  1. Environment Setup
conda create -n rl-trading python=3.9
conda activate rl-trading
pip install -r requirements.txt
  1. Configuration
cp config/example.yaml config/local.yaml
# Edit local.yaml with your settings
  1. Launch Training
python train.py --config configs/ppo_config.yaml

πŸ“ˆ Model Parameters

  • Window Size: 20 days
  • Batch Size: 64
  • Learning Rate: 0.01
  • Training Epochs: 150
  • Prediction Horizon: 10 days

πŸ“ Project Structure

.
β”œβ”€β”€ πŸ“‚ agents/            # RL implementations
β”œβ”€β”€ πŸ“‚ data/             # Data pipeline
β”œβ”€β”€ πŸ“‚ environments/     # Trading environments
β”œβ”€β”€ πŸ“‚ models/          # Trained models
β”œβ”€β”€ πŸ“‚ risk/           # Risk management
β”œβ”€β”€ πŸ“‚ execution/      # Order execution
└── πŸ“‚ analysis/      # Research & reports

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

0