8000 GitHub - rlewczuk/tt-metal: :metal: TT-NN operator library, and TT-Metalium low level kernel programming model.
[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to content

rlewczuk/tt-metal

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

tt-metal CI Ask DeepWiki

ttnn logo

TT-NN is a Python & C++ Neural Network OP library.

Latest Releases

Release Release Date
0.60.0 Jul 18, 2025
0.59.0 Jun 18, 2025
0.58.0 May 13, 2025
0.57.0 Apr 15, 2025
0.56.0 Mar 7, 2025

LLMs

Model Batch Hardware ttft (ms) t/s/u Target
t/s/u
t/s TT-Metalium Release vLLM Tenstorrent Repo Release
Qwen 3 32B (TP=8) 32 QuietBox 109 22.1 30 707.2 v0.59.0-rc52 f028da1
QwQ 32B (TP=8) 32 QuietBox 133 25.2 30 806.4 v0.56.0-rc51 e2e0002
DeepSeek R1 Distill Llama 3.3 70B (TP=8) 32 QuietBox 159 15.9 20 508.8 v0.59.0-rc53 f028da1
Llama 3.1 70B (TP=32) 32 Galaxy 105 59.1 80 1891.2 v0.59.0-rc52 f028da1
Llama 3.1 70B (TP=8) 32 QuietBox 159 15.9 20 508.8 v0.59.0-rc53 f028da1
Llama 3.2 11B Vision (TP=2) 16 n300 2550 15.8 17 252.8 v0.56.0-rc6 e2e0002
Qwen 2.5 7B (TP=2) 32 n300 126 32.5 38 1040.0 v0.56.0-rc33 e2e0002
Qwen 2.5 72B (TP=8) 32 QuietBox 319 14.6 20 467.2 v0.59.0-rc52 f028da1
Falcon 7B 32 n150 70 18.5 26 592.0 v0.59.0-rc52
Falcon 7B (DP=8) 256 QuietBox 87 15.9 26 4070.4 v0.59.0-rc38
Falcon 7B (DP=32) 1024 Galaxy 125 12.9 26 13209.6 v0.59.0-rc52
Falcon 40B (TP=8) 32 QuietBox 11.9 36 380.8 v0.59.0-rc38
Llama 3.1 8B 32 p100 87* 26.5* 848.0* v0.59.0-rc3 739dcaa
Llama 3.1 8B 32 p150 69* 29.1* 931.2* v0.59.0-rc3 739dcaa
Llama 3.1 8B (DP=2) 64 2 x p150 64* 18.6* 1190.4* v0.59.0-rc3 739dcaa
Llama 3.1 8B 32 n150 104 24.8 23 793.6 v0.59.0-rc52 f028da1
Llama 3.2 1B 32 n150 23 72.6 160 2323.2 v0.59.0-rc52 f028da1
Llama 3.2 3B 32 n150 53 43.5 60 1392.0 v0.59.0-rc52 f028da1
Mamba 2.8B 32 n150 35 14.1 41 451.2 v0.59.0-rc38
Mistral 7B 32 n150 101 28.3 23 905.6 v0.59.0-rc52 f028da1
Mixtral 8x7B (TP=8) 32 QuietBox 207 16.6 33 531.2 v0.59.0-rc53

Last Update: June 23, 2025

Notes:

  • ttft = time to first token | t/s/u = tokens/second/user | t/s = tokens/second; where t/s = t/s/u * batch.
  • TP = Tensor Parallel, DP = Data Parallel; Defines parallelization factors across multiple devices.
  • The reported LLM performance is for an input sequence length (number of rows filled in the KV cache) of 128 for all models except Mamba (which can accept any sequence length).
  • The t/s/u reported is the throughput of the first token generated after prefill, i.e. 1 / inter token latency.
  • Performance numbers were collected using the tt-metal model demos (accessible via the model links). If running with a vLLM inference server, performance may be different.
  • * Blackhole software optimization is under active development. Please join us in shaping the future of open source AI!
    [Discord] [Developer Hub]
  • For more information regarding vLLM installation and environment creation visit the Tenstorrent vLLM repository.

Speech-to-Text

Model Batch Hardware ttft (ms) t/s/u Target t/s/u t/s TT-Metalium Release
Whisper (distil-large-v3) 1 n150 232 58.1 45 58.1 v0.59.0-rc52

Diffusion Models

Model Batch Hardware Sec/Image Target Sec/Image Release
Stable Diffusion 1.4 (512x512) 1 n150 6.25 3
Stable Diffusion 3.5 Medium (512x512) 1 n150 16 10

Notes:

  • Stable Diffusion sec/image is based on the time elapsed from submitting the input prompt to receiving the image from the VAE decoder.

CNNs and Vision Transformers

Classification models

Model Batch Hardware Image/sec Target Image/sec Release
ResNet-50 (224x224) 16 n150 4,700 7,000 v0.59.0
ResNet-50 (224x224) (DP=2) 32 n300 9,200 14,000 v0.59.0
ResNet-50 (224x224) (DP=8) 128 QuietBox 35,800 56,000 v0.59.0
ResNet-50 (224x224) (DP=32) 512 Galaxy 96,800 224,000 v0.59.0
ViT-base (224x224) 8 n150 1,370 1,800 v0.60.0-rc4
ViT-base (224x224) (DP=2) 16 n300 1,900 3,600 v0.60.0-rc4
ViT-base (224x224) (DP=8) 64 QuietBox 7,700 14,400 v0.60.0-rc4
MobileNet-v2 (224x224) 10 n150 2,808 3,500

Object Detection

Model Batch Hardware Frame/sec (FPS) Target FPS Release
YOLOv4 (320x320) 1 n150 120 420
YOLOv4 (640x640) 1 n150 50 100
YOLOv8x (640x640) 1 n150 45 100
YOLOv8s (640x640) 1 n150 175 200
YOLOv8s_world (640x640) 1 n150 57 320
YOLOv9c (640x640) 1 n150 55 300
YOLOv10x (640x640) 1 n150 26 200

Segmentation

Model Batch Hardware Frame/sec (FPS) Target FPS Release
UNet - VGG19 (256x256) 1 n150 77 150
SegFormer Semantic Segmentation (512x512) 1 n150 84 300 v0.60.0-rc4
YOLOv9c (640x640) 1 n150 40 270
UFLD - v2 (320x800) 1 n150 1414 2000

NLPs

Model Batch Hardware Sentence/sec Target sentence/sec Release
BERT-Large 8 n150 270 400
Sentence-Bert (backbone: bert-base) 8 n150 233 360 v0.60.0-rc4

Model Updates

For the latest model updates and features, please see MODEL_UPDATES.md

Model Bring-Up and Testing

For information on initial model procedures, please see Model Bring-Up and Testing

TT-NN Tech Reports

Benchmarks


TT-Metalium logo

TT-Metalium is our low-level programming model, enabling kernel development for Tenstorrent hardware.

Getting started

Get started with simple kernels.

TT-Metalium Tech Reports

TT-Metalium Programming Examples

Hello World

Add Integers

Simple Tensor Manipulation

DRAM Data Movement

Eltwise

Matmul

Tools and Instruments

A comprehensive tool for visualizing and analyzing model execution, offering interactive graphs, memory plots, tensor details, buffer overviews, operation flow graphs, and multi-instance support with file or SSH-based report loading. Install via pip or build from source:

pip install ttnn-visualizer

Tenstorrent Bounty Program Terms and Conditions

This repo is a part of Tenstorrent’s bounty program. If you are interested in helping to improve tt-metal, please make sure to read the Tenstorrent Bounty Program Terms and Conditions before heading to the issues tab. Look for the issues that are tagged with both “bounty” and difficulty level!

License

TT-Metalium and TTNN are licensed under the Apache 2.0 License, as detailed in LICENSE and LICENSE_understanding.txt.

Some distributable forms of this project—such as manylinux-compliant wheels—may need to bundle additional libraries beyond the standard Linux system libraries. For example:

  • libnuma
  • libhwloc
  • openmpi (when built with multihost support)
  • libevent (when built with multihost support)

These libraries are bound by their own license terms.

About

🤘 TT-NN operator library, and TT-Metalium low level kernel programming model.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • C++ 54.7%
  • Python 39.3%
  • Jupyter Notebook 3.1%
  • C 1.7%
  • Shell 0.6%
  • CMake 0.6%
0