8000 GitHub - rodcar/claimlytic: Automated intelligent claims analysis for business process optimization
[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to content

rodcar/claimlytic

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 

History

57 Commits
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 

Repository files navigation

Claimlytic Logo

Automated intelligent claims analysis for business process optimization


πŸ‘¨β€πŸ’» Author

Ivan Yang Rodriguez Carranza

Email LinkedIn GitHub


πŸ“‹ Table of Contents


🎯 Problem Definition

Organizations waste time and money on inefficient business processes because they lack the tools to identify where bottlenecks occur and how to fix them. Claimlytic uses intelligent claims analysis to automatically identify process inefficiencies and provide clear, actionable recommendations for improvement.


πŸ”¬ Methodology

The project is built step-by-step through four main stages, as shown in the diagram below:

graph LR
    A[πŸ“‹ Requirements
    +
    πŸ“‹Test Plan] --> B[πŸ—οΈ Architecture Design]
    B --> C[βš™οΈ Implementation]
    C --> D[πŸ§ͺ Testing]
    
    style A fill:#e1f5fe
    style B fill:#f3e5f5
    style C fill:#e8f5e8
    style D fill:#fff3e0
Loading

πŸ“ Requirements

The following table outlines all project requirements organized by category, with unique identifiers and priority levels to guide testing.

Category ID Description Testing Priority
πŸ”§ Functional FR-001 Accept claims data uploads in CSV, text, and Excel formats for analysis (accepts folder path to process all documents inside) Low
πŸ”§ Functional FR-002 Accept PDF documents for business process documentation (accepts folder path to process all documents inside) Low
πŸ”§ Functional FR-003 Identify process inefficiencies correctly and suggest clear, actionable recommendations for process optimization Low
πŸ”§ Functional FR-004 Show explanations citing claims and business processes Low
πŸ”§ Functional FR-005 Create "As Is" process flow diagrams showing current inefficient business processes Low
πŸ”§ Functional FR-006 Create "To Be" process flow diagrams with optimized business processes Low
πŸ”§ Functional FR-007 Enable users to ask questions through chat and clarify details to update the analysis Low
⚑ Performance NFR-001 Correctly identify 50% of the process inefficiencies High
πŸ› οΈ Technical TR-001 Use IBM Granite models for LLM inference Low

πŸ“‹ Test Plan

🎯 Test Strategy

The testing strategy includes the following:

  • Evaluations: Evaluate the main features (claims analysis, diagram generation, and AI suggestions) through real-world scenarios to assess practical effectiveness, ensuring the system correctly identifies 50% of process inefficiencies.

πŸ“ Test Design

πŸ“Š Evaluations

Test ID Test Case Expected Outcome Requirement ID
EV-001 Process Inefficiency Detection Accuracy Using a validation set of 4 known process improvement cases, system achieves β‰₯50% accuracy in identifying actual inefficiencies NFR-001

Note: A more comprehensive evaluation that considers different industries and a larger number of test cases is required.


πŸ›οΈ Architecture Diagram

graph TB
    G["πŸ“‹ Claims"] --> A
    I["πŸ“„ Organization documentation"] --> A
    A["πŸ’¬ Chat UI"] --> B
    C --> J
    J --> C
    C --> A
    J --> E
    
    subgraph E["πŸ”§ Provider"]
        F["🌐 IBM watsonx API"]
        H["πŸ’» Local Granite LLM (Alternative)"]
    end
    
    subgraph B["βš™οΈ Service Layer"]
        C["πŸ” Analysis Service"]
        J["πŸ€– LLM Service"]
    end
    
    style A fill:#fce4ec
    style B fill:#e8f5e8
    style C fill:#fff3e0
    style E fill:#e1f5fe
    style F fill:#f3e5f5
    style G fill:#e1f5fe
    style H fill:#f3e5f5
    style I fill:#e1f5fe
    style J fill:#f3e5f5
Loading

πŸ› οΈ Technology Stack

  • AI/ML: IBM Granite ibm/granite-3-3-8b-instruct (via IBM watsonx.ai)
  • Backend: Python 3.12+
  • Document Processing: PyMuPDF
  • Frontend: Streamlit

Note: While Claimlytic is configured to use IBM Granite models through watsonx.ai, it can be extended to use local IBM Granite models using the LocalGraniteProvider.


πŸš€ Setup & Usage

πŸ“‹ Prerequisites

  • Python 3.12+
  • IBM Watsonx AI account (for cloud-hosted IBM Granite models)
  • UV package manager (optional, for UV installation method)

πŸ”§ Quick Installation

# Clone the repository
git clone https://github.com/rodcar/claimlytic.git

cd claimlytic

# Create virtual environment
python -m venv venv

# Activate virtual environment
# On macOS/Linux:
source venv/bin/activate
# On Windows:
# venv\Scripts\activate

# Install dependencies
pip install -r requirements.txt

# Run the application
python main.py

Alternative using UV Package Manager:

# Clone the repository
git clone https://github.com/rodcar/claimlytic.git

cd claimlytic

# Run the application (UV automatically handles dependencies and virtual environment)
uv run python main.py

πŸ“Š Basic Usage

Follow the steps on the Get Started page. Use the files from the data folder.

Step 1: Basic Usage

πŸ§ͺ Run Tests

Create and configure .venv (Based on .venv.example) before running the tests.

# Using UV
uv run pytest -v

🎬 Demo

Link: https://youtu.be/4YFdC4Xo6CI

Watch Video


βœ… Hackathon Rule Compliance

  • βœ… All AI/LLM functionality is powered by IBM Granite models (ibm/granite-3-3-8b-instruct) via watsonx.ai.
  • βœ… No third-party LLMs, APIs, or proprietary services are used.
  • βœ… All tooling is open source and self-hosted.
  • βœ… Open-source.

πŸ“ License

Claimlytic is licensed under the Apache License 2.0.

Β© 2025 Ivan Yang Rodriguez Carranza.

About

Automated intelligent claims analysis for business process optimization

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

0