8000 GitHub - rpunet/coding_problems: LeetCode problems and challenges in language C
[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to content

rpunet/coding_problems

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

96 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

CODING PROBLEMS

LeetCode collection of problems and challenges in language C

0041 - First Missing Positive

(C)

Given an unsorted integer array, find the smallest missing positive integer.

Example 1:

Input: [1,2,0]
Output: 3
Example 2:

Input: [3,4,-1,1]
Output: 2
Example 3:

Input: [7,8,9,11,12]
Output: 1

Follow up: Your algorithm should run in O(n) time and uses constant extra space.

0058 - Length of Last Word

(C)

Given a string s consists of upper/lower-case alphabets and empty space characters ' ', return the length of last word (last word means the last appearing word if we loop from left to right) in the string.

If the last word does not exist, return 0.

Note: A word is defined as a maximal substring consisting of non-space characters only.

Example:

Input: "Hello World"
Output: 5

0121 - Best Time to Buy and Sell Stock

(C)

Say you have an array for which the ith element is the price of a given stock on day i.

If you were only permitted to complete at most one transaction (i.e., buy one and sell one share of the stock), design an algorithm to find the maximum profit.

Note that you cannot sell a stock before you buy one.

Example 1:

Input: [7,1,5,3,6,4]
Output: 5
Explanation: Buy on day 2 (price = 1) and sell on day 5 (price = 6), profit = 6-1 = 5.
             Not 7-1 = 6, as selling price needs to be larger than buying price.
Example 2:

Input: [7,6,4,3,1]
Output: 0
Explanation: In this case, no transaction is done, i.e. max profit = 0.

0134 - Gas Station

(C)

There are N gas stations along a circular route, where the amount of gas at station i is gas[i].

You have a car with an unlimited gas tank and it costs cost[i] of gas to travel from station i to its next station (i+1). You begin the journey with an empty tank at one of the gas stations.

Return the starting gas station's index if you can travel around the circuit once in the clockwise direction, otherwise return -1.

Note:

If there exists a solution, it is guaranteed to be unique. Both input arrays are non-empty and have the same length. Each element in the input arrays is a non-negative integer.

Example 1:

Input: 
gas  = [1,2,3,4,5]
cost = [3,4,5,1,2]

Output: 3

Explanation:
Start at station 3 (index 3) and fill up with 4 unit of gas. Your tank = 0 + 4 = 4
Travel to station 4. Your tank = 4 - 1 + 5 = 8
Travel to station 0. Your tank = 8 - 2 + 1 = 7
Travel to station 1. Your tank = 7 - 3 + 2 = 6
Travel to station 2. Your tank = 6 - 4 + 3 = 5
Travel to station 3. The cost is 5. Your gas is just enough to travel back to station 3.
Therefore, return 3 as the starting index.
Example 2:

Input: 
gas  = [2,3,4]
cost = [3,4,3]

Output: -1

Explanation:
You can't start at station 0 or 1, as there is not enough gas to travel to the next station.
Let's start at station 2 and fill up with 4 unit of gas. Your tank = 0 + 4 = 4
Travel to station 0. Your tank = 4 - 3 + 2 = 3
Travel to station 1. Your tank = 3 - 3 + 3 = 3
You cannot travel back to station 2, as it requires 4 unit of gas but you only have 3.
Therefore, you can't travel around the circuit once no matter where you start.

0139 - Word Break

(C)

Given a non-empty string s and a dictionary wordDict containing a list of non-empty words, determine if s can be segmented into a space-separated sequence of one or more dictionary words.

Note:

The same word in the dictionary may be reused multiple times in the segmentation.

You may assume the dictionary does not contain duplicate words.

Example 1:

Input: s = "leetcode", wordDict = ["leet", "code"]
Output: true
Explanation: Return true because "leetcode" can be segmented as "leet code".
Example 2:

Input: s = "applepenapple", wordDict = ["apple", "pen"]
Output: true
Explanation: Return true because "applepenapple" can be segmented as "apple pen apple".
             Note that you are allowed to reuse a dictionary word.
Example 3:

Input: s = "catsandog", wordDict = ["cats", "dog", "sand", "and", "cat"]
Output: false

0152 - Maximum Product SubArray

(C)

Given an integer array nums, find the contiguous subarray within an array (containing at least one number) which has the largest product.

Example 1:

Input: [2,3,-2,4]
Output: 6
Explanation: [2,3] has the largest product 6.
Example 2:

Input: [-2,0,-1]
Output: 0
Explanation: The result cannot be 2, because [-2,-1] is not a subarray.

0165 - Compare Version Numbers

(C)

Compare two version numbers version1 and version2.

If version1 > version2 return 1; if version1 < version2 return -1; otherwise return 0. You may assume that the version strings are non-empty and contain only digits and the . character. The '.' character does not represent a decimal point and is used to separate number sequences. For instance, 2.5 is not "two and a half" or "half way to version three", it is the fifth second-level revision of the second first-level revision. You may assume the default revision number for each level of a version number to be 0. For example, version number 3.4 has a revision number of 3 and 4 for its first and second level revision number. Its third and fourth level revision number are both 0.

Example 1:

Input: version1 = "0.1", version2 = "1.1"
Output: -1

Example 2:

Input: version1 = "1.0.1", version2 = "1"
Output: 1

Example 3:

Input: version1 = "7.5.2.4", version2 = "7.5.3"
Output: -1

Example 4:

Input: version1 = "1.01", version2 = "1.001"
Output: 0
Explanation: Ignoring leading zeroes, both “01” and “001" represent the same number “1”

Example 5:

Input: version1 = "1.0", version2 = "1.0.0"
Output: 0
Explanation: The first version number does not have a third level revision number, which means its third level revision number is default to "0" 

Note:

Version strings are composed of numeric strings separated by dots . and this numeric strings may have leading zeroes.

Version strings do not start or end with dots, and they will not be two consecutive dots.

0179 - Largest Number

(C)

Given a list of non negative integers, arrange them such that they form the largest number.

Example 1:

Input: [10,2]
Output: "210"

Example 2:

Input: [3,30,34,5,9]
Output: "9534330"

Note: The result may be very large, so you need to return a string instead of an integer.

0198 - House Robbers

(C)

You are a professional robber planning to rob houses along a street. Each house has a certain amount of money stashed, the only constraint stopping you from robbing each of them is that adjacent houses have security system connected and it will automatically contact the police if two adjacent houses were broken into on the same night.

Given a list of non-negative integers representing the amount of money of each house, determine the maximum amount of money you can rob tonight without alerting the police.

Example 1:

Input: nums = [1,2,3,1]
Output: 4
Explanation: Rob house 1 (money = 1) and then rob house 3 (money = 3).
            Total amount you can rob = 1 + 3 = 4.
Example 2:

Input: nums = [2,7,9,3,1]
Output: 12
Explanation: Rob house 1 (money = 2), rob house 3 (money = 9) and rob house 5 (money = 1).
            Total amount you can rob = 2 + 9 + 1 = 12.

Constraints:

0 <= nums.length <= 100
0 <= nums[i] <= 400

0229 - Majority Element II

(C)

Given an integer array of size n, find all elements that appear more than ⌊ n/3 ⌋ times.

Note: The algorithm should run in linear time and in O(1) space.

Example 1:

Input: [3,2,3]
Output: [3]
Example 2:

Input: [1,1,1,3,3,2,2,2]
Output: [1,2]

0299 - Bulls and Cows

(C)

You are playing the following Bulls and Cows game with your friend: You write down a number and ask your friend to guess what the number is. Each time your friend makes a guess, you provide a hint that indicates how many digits in said guess match your secret number exactly in both digit and position (called "bulls") and how many digits match the secret number but locate in the wrong position (called "cows"). Your friend will use successive guesses and hints to eventually derive the secret number.

Write a function to return a hint according to the secret number and friend's guess, use A to indicate the bulls and B to indicate the cows.

Please note that both secret number and friend's guess may contain duplicate digits.

Example 1:

Input: secret = "1807", guess = "7810"

Output: "1A3B"

Explanation: 1 bull and 3 cows. The bull is 8, the cows are 0, 1 and 7.
Example 2:

Input: secret = "1123", guess = "0111"

Output: "1A1B"

Explanation: The 1st 1 in friend's guess is a bull, the 2nd or 3rd 1 is a cow.

Note:

You may assume that the secret number and your friend's guess only contain digits, and their lengths are always equal.

0389 - Find the Difference

(C)

Given two strings s and t which consist of only lowercase letters.

String t is generated by random shuffling string s and then add one more letter at a random position.

Find the letter that was added in t.

Example:

Input:
s = "abcd"
t = "abcde"

Output:
e

Explanation:
'e' is the letter that was added.

0399 - Evaluate Division

(C)

You are given equations in the format A / B = k, where A and B are variables represented as strings, and k is a real number (floating-point number). Given some queries, return the answers. If the answer does not exist, return -1.0.

The input is always valid. You may assume that evaluating the queries will result in no division by zero and there is no contradiction.

Example 1:

Input: equations = [["a","b"],["b","c"]], values = [2.0,3.0], queries = [["a","c"],["b","a"],["a","e"],["a","a"],["x","x"]]
Output: [6.00000,0.50000,-1.00000,1.00000,-1.00000]
Explanation: 
Given: a / b = 2.0, b / c = 3.0
queries are: a / c = ?, b / a = ?, a / e = ?, a / a = ?, x / x = ?
return: [6.0, 0.5, -1.0, 1.0, -1.0 ]
Example 2:

Input: equations = [["a","b"],["b","c"],["bc","cd"]], values = [1.5,2.5,5.0], queries = [["a","c"],["c","b"],["bc","cd"],["cd","bc"]]
Output: [3.75000,0.40000,5.00000,0.20000]
Example 3:

Input: equations = [["a","b"]], values = [0.5], queries = [["a","b"],["b","a"],["a","c"],["x","y"]]
Output: [0.50000,2.00000,-1.00000,-1.00000]

Constraints:

1 <= equations.length <= 20

equations[i].length == 2

1 <= equations[i][0].length, equations[i][1].length <= 5

values.length == equations.length

0.0 < values[i] <= 20.0

1 <= queries.length <= 20

queries[i].length == 2

1 <= queries[i][0].length, queries[i][1].length <= 5

equations[i][0], equations[i][1], queries[i][0], queries[i][1] consist of low

0421 - Maximum XOR of Two Numbers in an Array

(C)

Given a non-empty array of numbers, a0, a1, a2, … , an-1, where 0 ≤ ai < 231.

Find the maximum result of ai XOR aj, where 0 ≤ i, j < n.

Could you do this in O(n) runtime?

Example:

Input: [3, 10, 5, 25, 2, 8]

Output: 28

Explanation: The maximum result is 5 ^ 25 = 28.

0459 - Repeated Substring Pattern

(C)

Given a non-empty string check if it can be constructed by taking a substring of it and appending multiple copies of the substring together. You may assume the given string consists of lowercase English letters only and its length will not exceed 10000.

Example 1:

Input: "abab"
Output: True
Explanation: It's the substring "ab" twice.
Example 2:

Input: "aba"
Output: False
Example 3:

Input: "abcabcabcabc"
Output: True
Explanation: It's the substring "abc" four times. (And the substring "abcabc" twice.)

0495 - Teemo Attacking

(C)

In LOL world, there is a hero called Teemo and his attacking can make his enemy Ashe be in poisoned condition. Now, given the Teemo's attacking ascending time series towards Ashe and the poisoning time duration per Teemo's attacking, you need to output the total time that Ashe is in poisoned condition.

You may assume that Teemo attacks at the very beginning of a specific time point, and makes Ashe be in poisoned condition immediately.

Example 1:

Input: [1,4], 2
Output: 4
Explanation: At time point 1, Teemo starts attacking Ashe and makes Ashe be poisoned immediately. 
This poisoned status will last 2 seconds until the end of time point 2. 
And at time point 4, Teemo attacks Ashe again, and causes Ashe to be in poisoned status for another 2 seconds. 
So you finally need to output 4.
Example 2:

Input: [1,2], 2
Output: 3
Explanation: At time point 1, Teemo starts attacking Ashe and makes Ashe be poisoned. 
This poisoned status will last 2 seconds until the end of time point 2. 
However, at the beginning of time point 2, Teemo attacks Ashe again who is already in poisoned status. 
Since the poisoned status won't add up together, though the second poisoning attack will still work at time point 2, it will stop at the end of time point 3. 
So you finally need to output 3.

Note:

You may assume the length of given time series array won't exceed 10000. You may assume the numbers in the Teemo's attacking time series and his poisoning time duration per attacking are non-negative integers, which won't exceed 10,000,000.

0713 - Subarray Product Less Than K

(C)

Your are given an array of positive integers nums.

Count and print the number of (contiguous) subarrays where the product of all the elements in the subarray is less than k.

Example 1:
Input: nums = [10, 5, 2, 6], k = 100
Output: 8
Explanation: The 8 subarrays that have product less than 100 are: [10], [5], [2], [6], [10, 5], [5, 2], [2, 6], [5, 2, 6].
Note that [10, 5, 2] is not included as the product of 100 is not strictly less than k.

Note:

0 < nums.length <= 50000. 0 < nums[i] < 1000. 0 <= k < 10

0949 - Largest Time for Given Digits

(C)

Given an array arr of 4 digits, find the latest 24-hour time that can be made using each digit exactly once.

24-hour times are formatted as "HH:MM", where HH is between 00 and 23, and MM is between 00 and 59. The earliest 24-hour time is 00:00, and the latest is 23:59.

Return the latest 24-hour time in "HH:MM" format. If no valid time can be made, return an empty string.

Example 1:

Input: A = [1,2,3,4]
Output: "23:41"
Explanation: The valid 24-hour times are "12:34", "12:43", "13:24", "13:42", "14:23", "14:32", "21:34", "21:43", "23:14", and "23:41". Of these times, "23:41" is the latest.
Example 2:

Input: A = [5,5,5,5]
Output: ""
Explanation: There are no valid 24-hour times as "55:55" is not valid.
Example 3:

Input: A = [0,0,0,0]
Output: "00:00"
Example 4:

Input: A = [0,0,1,0]
Output: "10:00"

Constraints:

arr.length == 4
0 <= arr[i] <= 9

0980 - Unique Paths III

(C)

On a 2-dimensional grid, there are 4 types of squares:

1 represents the starting square. There is exactly one starting square. 2 represents the ending square. There is exactly one ending square. 0 represents empty squares we can walk over. -1 represents obstacles that we cannot walk over. Return the number of 4-directional walks from the starting square to the ending square, that walk over every non-obstacle square exactly once.

Example 1:

Input: [[1,0,0,0],[0,0,0,0],[0,0,2,-1]]
Output: 2
Explanation: We have the following two paths: 
1. (0,0),(0,1),(0,2),(0,3),(1,3),(1,2),(1,1),(1,0),(2,0),(2,1),(2,2)
2. (0,0),(1,0),(2,0),(2,1),(1,1),(0,1),(0,2),(0,3),(1,3),(1,2),(2,2)
Example 2:

Input: [[1,0,0,0],[0,0,0,0],[0,0,0,2]]
Output: 4
Explanation: We have the following four paths: 
1. (0,0),(0,1),(0,2),(0,3),(1,3),(1,2),(1,1),(1,0),(2,0),(2,1),(2,2),(2,3)
2. (0,0),(0,1),(1,1),(1,0),(2,0),(2,1),(2,2),(1,2),(0,2),(0,3),(1,3),(2,3)
3. (0,0),(1,0),(2,0),(2,1),(2,2),(1,2),(1,1),(0,1),(0,2),(0,3),(1,3),(2,3)
4. (0,0),(1,0),(2,0),(2,1),(1,1),(0,1),(0,2),(0,3),(1,3),(1,2),(2,2),(2,3)
Example 3:

Input: [[0,1],[2,0]]
Output: 0
Explanation: 
There is no path that walks over every empty square exactly once.
Note that the starting and ending square can be anywhere in the grid.

Note:

1 <= grid.length * grid[0].length <= 20

1041 - Robot Bounded In Circle

(C)

On an infinite plane, a robot initially stands at (0, 0) and faces north. The robot can receive one of three instructions:

"G": go straight 1 unit; "L": turn 90 degrees to the left; "R": turn 90 degress to the right. The robot performs the instructions given in order, and repeats them forever.

Return true if and only if there exists a circle in the plane such that the robot never leaves the circle.

Example 1:

Input: "GGLLGG"
Output: true
Explanation: 
The robot moves from (0,0) to (0,2), turns 180 degrees, and then returns to (0,0).
When repeating these instructions, the robot remains in the circle of radius 2 centered at the origin.
Example 2:

Input: "GG"
Output: false
Explanation: 
The robot moves north indefinitely.
Example 3:

Input: "GL"
Output: true
Explanation: 
The robot moves from (0, 0) -> (0, 1) -> (-1, 1) -> (-1, 0) -> (0, 0) -> ...

Note:

1 <= instructions.length <= 100
instructions[i] is in {'G', 'L', 'R'}

1094 - Car Pooling

(C)

You are driving a vehicle that has capacity empty seats initially available for passengers. The vehicle only drives east (ie. it cannot turn around and drive west.)

Given a list of trips, trip[i] = [num_passengers, start_location, end_location] contains information about the i-th trip: the number of passengers that must be picked up, and the locations to pick them up and drop them off. The locations are given as the number of kilometers due east from your vehicle's initial location.

Return true if and only if it is possible to pick up and drop off all passengers for all the given trips.

Example 1:

Input: trips = [[2,1,5],[3,3,7]], capacity = 4
Output: false
Example 2:

Input: trips = [[2,1,5],[3,3,7]], capacity = 5
Output: true
Example 3:

Input: trips = [[2,1,5],[3,5,7]], capacity = 3
Output: true
Example 4:

Input: trips = [[3,2,7],[3,7,9],[8,3,9]], capacity = 11
Output: true

Constraints:

trips.length <= 1000
trips[i].length == 3
1 <= trips[i][0] <= 100
0 <= trips[i][1] < trips[i][2] <= 1000
1 <= capacity <= 100000

1291 - Sequential Digits

(C)

An integer has sequential digits if and only if each digit in the number is one more than the previous digit.

Return a sorted list of all the integers in the range [low, high] inclusive that have sequential digits.

Example 1:

Input: low = 100, high = 300
Output: [123,234]

Example 2:

Input: low = 1000, high = 13000
Output: [1234,2345,3456,4567,5678,6789,12345]

Constraints:

10 <= low <= high <= 10^9

About

LeetCode problems and challenges in language C

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

0